| 研究生: |
戴嘉軒 Dai, Jia-Syuan |
|---|---|
| 論文名稱: |
類泛素活化酵素 6 在惡性癌症中扮演的角色 The Role of Ubiquitin – like Modifier Activating Enzyme 6 in Malignant Cancer Cells |
| 指導教授: |
張文粲
Chang, Wen-Tsan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 類泛素活化酵素6 、癌症治療 |
| 外文關鍵詞: | Ubiquitin – like Modifier Activating Enzyme 6, Cancer Therapy |
| 相關次數: | 點閱:77 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
泛素-蛋白酶體系統(Ubiquitin-proteasome system) 是存在於真核細胞中用來代謝蛋白質的一種方式,將要被分解的蛋白質藉由泛素活化酵素(Ubiquitin-activating enzyme, E1),泛素綴合酶(Ubiquitin-conjugating enzyme, E2)和泛素連接酶(Ubiquitin protein ligase, E3)接上泛素,再經由26S蛋白酶體而降解。我們知道在生長代謝快速的癌細胞此路徑的活性會大幅上升,所以才選擇其作為目標。已知目前在人類中僅有兩種E1酵素,相較於具以多種種類的E2、E3酵素,將其當作標的,更能廣泛研究泛素-蛋白酶體路徑對於癌細胞的影響。我從Human Protein Atlas去分析正常組織和癌細胞中類泛素活化酵素6(Ubiquitin –like Modifier Activating Enzyme 6,UBA6)的表現,發現在癌細胞中其蛋白量上升。我以類泛素活化酵素6作為研究對象利用RNA干擾(RNA interference, RNAi),在多種癌細胞中(HeLa、MDA-MB-231、PC3)穩定抑制類泛素活化酵素6的表現。根據實驗結果顯示缺乏類泛素活化酵素6的細胞株,相對於對照組從生長的觀察和群落形成的能力有下降的趨勢,從傷口癒合爬行能力測定實驗中也有變慢的情況。透過西方墨點法分析,發現跟生長或爬行的蛋白,例如ERK、Akt等表現量下降,而E-cadherin上升、N-cadherin或vimentin下降。為了更進一步去了解降低此酵素對於癌細胞的影響,因此利用了幾種不同的抗癌藥物依託泊苷(Etoposide) 、2-去氧葡萄糖(2-Deoxyglucose)、每福敏(Metformin)分別對於不同的細胞株處理,發現在2-去氧葡萄糖藥物影響了靜默株形成群落的能力且增加細胞凋亡的數量。根據目前的實驗結果可以得知缺乏類泛素活化酵素6會影響癌細胞的生長及爬行能力,降低細胞的惡性程度。
Ubiquitin-proteasome system is used to degrade cellular protein in eukaryotic cell. Ubiquitin-activating enzyme (E1) uses ATP to active ubiquitin, which is transferred to ubiquitin conjugating enzyme (E2), and ubiquitin-protein ligase (E3) connects E2 with the target protein. Then, ubiquitylated target protein can be degraded by 26S proteasome. We know that the pathway is substantially increased in high growth rate and metabolism of cancer cells, so we chose this way as the target in human cancer therapy. Therefore only two kinds of E1 enzymes are best targets than a diverse of E2s and E3s. Human Protein Atalas show that expression level of Ubiquitin – like Modifier Activating Enzyme 6 (UBA6) in normal tissue and tumor discover that protein expression increases in cancer cell. I have established the stable knockdown UBA6 cancer cell lines by RNAi (RNA interference), including HeLa (cervix cancer), MDA-MB-231 (breast cancer) and PC3 (prostate cancer). The results demonstrate that silencing of UBA6 expression decreases cell growth and migration ability. Analyze some protein such as Akt and ERK in silencing of UBA6 cell lines are found to decrease protein expression. Then EMT related protein finds that E-cadherin is up-regulated and N-cadherin or vimentin is decreased. And then, the glycolytic pathway plays an important role in cancer cells. Therefore, we test the effect of glycolysis in knockdown UBA6 cells by glycolytic inhibitor 2-deoxyglucose (2-DG) and metformin. The result shows that UBA6 knockdown cells have a higher drug sensitivity for 2-DG than metformin. Taken together, decreased UBA6 expression directly attenuates tumor malignancy and increases 2-DG sensitivity, suggesting that provides a new target for anticancer therapy.
[1] Goldstein, G., et al. Isolation of a polypeptide that has lymphocyte- differentiating properties and is probably represented universally in living cells. Proc. Natl Acad. Sci. USA 72, 11-15 (1975).
[2] Ciechanover A. Intracellular protein degradation: From a vague idea through the lysosome and the ubiquitin–proteasome system and onto human diseases and drug targeting. Bioorg. Med. Chem. 21 3400–3410 (2013).
[3] Glickman M.H., Ciechanover, A. The ubiquitinproteasome proteolytic pathway: destruction for the sake of construction. Physiol. Rev. 82 373-428 (2002).
[4] Kerscher O, Felberbaum R, Hochstrasser M. Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol 22 159–80(2006)
[5] Pickart CM., Eddins MJ. Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta 1695 55–72 (2004) .
[6] Schulman BA, Harper JW. Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nat Rev Mol Cell Biol. 10:319-31(2009).
[7] Haas, A.L. and Rose, I.A. The mechanism of ubiquitin activating enzyme. A kinetic and equilibrium analysis. J Biol Chem 257 10329-1033(1982)
[8] Haas A.L., et al. Ubiquitin-activating enzyme Mechanism and role in protein-ubiquitin conjugation. J Biol Chem 257 2543-2548(1982).
[9] Lee I. and Schindelin H. Structural insights into E1-catalyzed ubiquitin activation and transfer to conjugating enzymes. Cell 134, 268-278 (2008).
[10] Ciechanover A., et al. Activation of the heatstable polypeptide of the ATP-dependent proteolytic system. Proc Natl Acad Sci U S A 78 761-765 (1981).
[11] Chiu Y.H., Sun Q. and Chen Z.J. E1-L2 activates both ubiquitin and FAT10. MoCell 27 1014-10 23(2007).
[12] Pelzer C., et al. UBE1L2, a novel E1 enzyme specific for ubiquitin. J Biol Chem 282 23010-23014(2007).
[13] Jin J., Li X., Gygi S.P. and Harper J.W. Dual E1 activation systems for ubiquitin differentially regulate E2 enzyme charging. Nature 447 1135-1138(2007).
[14] Aichem A., et al. USE1 is a bispecific conjugating enzyme for ubiquitin and FAT10, which FAT10ylates itself in cis. Nat Commun 1 13 (2010).
[15] Ungermannova D. et al. Largazole and its derivatives selectively inhibit ubiquitin activating enzyme (e1). PLoS ONE 7 e29208 (2012).
[16] Moudry P., et al. Ubiquitin-activating enzyme UBA1 is required for cellular response to DNA damage. Cell Cycle 11 1573–1582(2012).
[17] Hershko A., Ciechanover A. Mechanisms of intracellular protein breakdown. Annu. Rev. Biochem. 51 335−364 (1982).
[18] Bialas J., Groettrup M., Aichem A. Conjugation of the Ubiquitin Activating Enzyme UBE1 with the Ubiquitin-Like Modifier FAT10 Targets It for Proteasomal Degradation. PLoS ONE 10 e0120329 (2015).
[19] Petroski M. D. and Deshaies R. J. Context of multiubiquitin chain attachment influences the rate of Sic1 degradation. Mol. Cell 11 1435–1444(2003).
[20] Petroski M. and Deshaies R. Function and regulation of cullin- RING ubiquitin ligases. Nat. Rev. Mol. Cell. Biol. 6 8–20(2005).
[21] Peng J., et al. A proteomics approach to understanding protein ubiquitination. Nat. Biotechnol. 21 921–926(2003).
[22] Passmore L. A. and Barford D. Getting into position: the catalytic mechanisms of protein ubiquitylation. Biochem. J. 379 513–525(2004).
[23] Haglund K., Di Fiore P. P., and Dikic I. Distinct monoubiquitin signals in receptor endocytosis. Trends Biochem. Sci. 28 598–603(2003).
[24] Hicke L. Protein regulation by monoubiquitin. Nat. Rev. Mol. Cell. Biol. 2 195–201(2001).
[25] Bergink S. and Jentsch S. Principles of ubiquitin and SUMO modifications in DNA repair. Nature 458 461–467(2009).
[26] Sarcevic B., et al. Regulation of the ubiquitin-conjugating enzyme hHR6A by CDK-mediated phosphorylation. EMBO J. 21 2009–2018(2002).
[27] Haglund K., et al. Multiple monoubiquitination of RTKs is sufficient for their endocytosis and degradation. Nat. Cell Biol. 5 461–466(2003).
[28] Jin L., et al. Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex. Cell 133 653–665(2008).
[29] Thrower J. S., Hoffman L., Rechsteiner M., and Pickart C. M. Recognition of the polyubiquitin proteolytic signal. EMBO J. 19 94–102(2000).
[30] Tokunaga, F., et al. SHARPIN is a component of the NF-kappaB-activating linear ubiquitin chain assembly complex. Nature 471 633–636(2011).
[31] Ikeda, F., et al. SHARPIN forms a linear ubiquitin ligase complex regulating NF-kappaB activity and apoptosis. Nature 471 637–641(2011).
[32] Rogers S, Wells R, Rechsteiner M. Amino acid sequences common to rapidly degraded proteins: The PEST hypothesis. Science 234 364-368(1986).
[33] Ciechanover A, Finley D, Varshavsky A. Ubiquitin dependence of selective protein degradation demonstrated in the mammalian cell cycle mutant ts85. Cell 37 57-66(1984).
[34] Ciechanover A, et al. Degradation of nuclear oncoproteins by the ubiquitin system in vitro. Proc Natl Acad Sci U S A 88 139-143(1991).
[35] Pause A, et al. The von Hippel-Lindau tumor-suppressor gene product forms a stable complex with human CUL-2, a member of the Cdc53 family of proteins. Proc Natl Acad Sci U S A 94 2156-2161(1997).
[36] Huang LE, et al. Regulation of hypoxia-inducible factor 1 alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci U S A 95 7987-7992 (1998).
[37] Salceda S, Caro J. Hypoxia-inducible factor 1 alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions: Its stabilization by hypoxia depends on redox-induced changes. J Biol Chem 272 22642-22647(1997).
[38] Pugh CW, et al. Activation of hypoxia-inducible factor-1: Definition of regulatory domains within the alpha subunit. J Biol Chem 272 11205-11214(1997).
[39] Cockman ME, et al. Hypoxia inducible factor-alpha binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein. J Biol Chem 275 25733-25741(2000).
[40] Tanimoto K, et al. Mechanism of regulation of the hypoxiainducible factor-1 alpha by the von Hippel-Lindau tumor suppressor protein. Embo J 19 4298-4309(2000).
[41] Ohh M, et al. Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. Nat Cell Biol 2 423-427(2000).
[42] Kamura T, et al. Activation of HIF1 alpha ubiquitination by a reconstituted von Hippel-Lindau (VHL) tumor suppressor complex. Proc Natl Acad Sci U S A 97 10430-10435(2000).
[43] Clifford SC, et al. Contrasting effects on HIF-1 alpha regulation by disease-causing pVHL mutations correlate with patterns of tumourigenesis in von Hippel-Lindau disease. Hum Mol Genet 10 1029-1038(2001).
[44] Shibata H, et al. Rapid colorectal adenoma formation initiated by conditional targeting of the Apc gene. Science 278 120-123(1997).
[45] Powell SM, et al. APC mutations occur early during colorectal tumorigenesis. Nature 359 235-237(1992).
[46] Aoki K.and Taketo MM. Adenomatous polyposis coli (APC): a multi-functional tumor suppressor gene. J Cell Sci. 120 3327-35(2007).
[47] Scheffner, M., et al. The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75 495-505(1993).
[48] zur Hausen H. Papillomavirus infections—a major cause of human cancers. Biochim. Biophys. Acta 1288 F55-F78(1996).
[49] Tomaić, V., D. Pim, and L. Banks. The stability of the human papillomavirus E6 oncoprotein is E6AP dependent. Virology 393 7-10 (2009).
[50] Honda R, Yasuda H. Activity of MDM2, a ubiquitin ligase, toward p53 or itself is dependent on the RING finger domain of the ligase. Oncogene 19 1473-1476(2000).
[51] D’Andrea AD, Grompe M. The Fanconi anaemia/BRCA pathway. Nat Rev Cancer 3 23-34(2003).
[52] Starita LM, Parvin JD. The multiple nuclear functions of BRCA1: Transcription, ubiquitination and DNA repair. Curr Opin Cell Biol 15:345-350(2003).
[53] Lorick KL, et al. RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc Natl Acad Sci U S A 96 11364-11369(1999).
[54] Nishikawa H, et al. Mass spectrometric and mutational analyses reveal Lys-6-linked polyubiquitin chains catalyzed by BRCA1-BARD1 ubiquitin ligase. J Biol Chem 279 3916-3924(2004).
[55] Wu-Baer F, et al. The BRCA1/BARD1 heterodimer assembles polyubiquitin chains through an unconventional linkage involving lysine residue K6 of ubiquitin. J Biol Chem 278 34743-34746(2003).
[56] Pagano M, et al. Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science 269 682-685(1995).
[57] Shirane M, et al. Down-regulation of p27(Kip1) by two mechanisms, ubiquitin-mediated degradation and proteolytic processing. J Biol Chem 274 13886-13893(1999).
[58] Desdouets C, Brechot C: P27. A pleiotropic regulator of cellular phenotype and a targetfor cell cycle dysregulation in cancer. Pathol Biol 48 203-210(2000).
[59] Moller MB. P27 in cell cycle control and cancer. Leuk Lymphoma 39 19-27(2000).
[60] Slingerland J, Pagano M. Regulation of the cdk inhibitor p27 and its deregulation in cancer. J Cell Physiol 183 10-17(2000).
[61] Loda M, et al. Increased proteasome-dependent degradation of the cyclin-dependent kinase inhibitor p27 in aggressive colorectal carcinomas. Nat Med 3 231-234(1997).
[62] Sutterluty H, et al. P45SKP2 promotes p27Kip1 degradation and induces S phase in quiescent cells. Nat Cell Biol 1 207-214(1999).
[63] Zhu CQ, et al. Skp2 gene copy number aberrations are common in non-small cell lung carcinoma, and its overexpression in tumors with ras mutation is a poor prognostic marker. Clin Cancer Res 10 1984-1991(2004).
[64] Ioannis A Voutsadakis. The ubiquitin–proteasome system and signal transduction pathways regulating Epithelial Mesenchymal transition of cancer. Journal of Biomedical Science 19(2012).
[65] Tsukamoto S., et al. Himeic acid A: a new ubiquitin-activating enzyme inhibitor isolated from a marine-derived fungus, Aspergillus sp. Bioorg. Med. Chem. Lett. 15 191–194 (2005).
[66] Ungermannova D., et al. Largazole and its derivatives selectively inhibit ubiquitin activating enzyme (e1), PLoS One 7 e29208(2012).
[67] Wu L.C., et al. Largazole arrests cell cycle at G1 phase and triggers proteasomal degradation of E2F1 in lung cancer cells, ACS Med. Chem. 4 921–926(2013).
[68] Davydov I. V., et al. Inhibitors of ubiquitin-activating enzyme (E1), a new class of potential cancer therapeutics, Cancer Res. 67 9472–9481(2007).
[69] Ceccarelli D. F., er al. An allosteric inhibitor of the human Cdc34 ubiquitin-conjugating enzyme, Cell 145 1075–1087 (2011).
[70] Harper J. W., King R. W., Stuck in the middle: drugging the ubiquitin system at the e2 step, Cell 145 1007–1009(2011).
[71] Ushiyama S., et al. Manadosterols A and B, sulfonated sterol dimers inhibiting the Ubc13–Uev1A interaction, isolated from the marine sponge Lissodendryx fibrosa, J. Nat. Prod. 75 1495–1499(2012).
[72] Petroski M. D., et al. Substrate modification with lysine 63-linked ubiquitin chains through the UBC13–UEV1A ubiquitin-conjugating enzyme, J. Biol. Chem. 282 29936–29945 (2007).
[73] Lamothe B., et al. Site-specific Lys-63-linked tumor necrosis factor receptor-associated factor 6 auto-ubiquitination is a critical determinant of I kappa B kinase activation, J. Biol. Chem. 282 4102–4112(2007).
[74] Wang Z., Liu P., Inuzuka H., Wei W., Roles of F-box proteins in cancer, Nat. Rev. Cancer 14 233–247(2014).
[75] Bedford L., et al. Ubiquitin-like protein conjugation and the ubiquitin–proteasome system as drug targets, Nat. Rev. Drug Discov. 10 29–46(2011).
[76] Welcker M., et al. The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation dependent c-Myc protein degradation, Proc. Natl. Acad. Sci. 101 9085–9090(2004).
[77] Yada M., et al. Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7, EMBO J. 23 2116–2125(2004).
[78] Moberg K.H., et al. The Drosophila F box protein archipelago regulates dMyc protein levels in vivo, Curr. Biol. 14 965–974(2004).
[79] Nateri A.S., Riera-Sans L., Da Costa C., Behrens A., The ubiquitin ligase SCF Fbw7 antagonizes apoptotic JNK signaling, Science 303 1374–1378(2004).
[80] Wei W., et al. The v-Jun point mutation allows c-Jun to escape GSK3-dependent recognition and destruction by the Fbw7 ubiquitin ligase, Cancer Cell 8 25–33(2005).
[81] Strohmaier H., et al. Human F-box protein hCdc4 targets cyclin E for proteolysis and ismutated in a breast cancer cell line, Nature 413 316–322 (2001).
[82] Moberg K.H., et al. Archipelago regulates Cyclin E levels in Drosophila and is mutated in human cancer cell lines, Nature 413 311–316(2001).
[83] Koepp D.M., et al. Phosphorylation-dependent ubiquitination of cyclin E by the SCF Fbw7 ubiquitin ligase, Science 294 173–177 (2001).
[84] Mao J.H., et al. FBXW7 targets mTOR for degradation and cooperates with PTEN in tumor suppression, Science 321 1499–1502(2008).
[85] Inuzuka H., et al. SCF(FBW7) regulates cellular apoptosis by targeting MCL1 for ubiquitylation and destruction, Nature 471 104–109(2011).
[86] Wertz I.E., et al. Sensitivity to antitubulin chemotherapeutics is regulated by MCL1 and FBW7, Nature 471 110–114(2011).
[87] Cassavaugh J.M., et al. Negative regulation of HIF-1alpha by an FBW7-mediated degradation pathway during hypoxia, J. Cell. Biochem. 112 3882–3890(2011).
[88] Flugel D., Gorlach A., Kietzmann T., GSK-3beta regulates cell growth, migration, and angiogenesis via Fbw7 and USP28-dependent degradation of HIF-1alpha, Blood 119 1292–1301(2012).
[89] Fukushima H., et al. SCF(Fbw7) modulates the NF-kB signaling pathway by targeting NFkB2 for ubiquitination and destruction, Cell Rep. 1 434–443(2012).
[90] Busino L., et al. Fbxw7alpha- and GSK3-mediated degradation of p100 is a pro-survival mechanism in multiple myeloma, Nat. Cell Biol. 14 375–385(2012).
[91] Wu G., et al. SEL-10 is an inhibitor of notch signaling that targets notch for ubiquitin-mediated protein degradation, Mol. Cell. Biol. 21 7403–7415(2001).
[92] Gupta-Rossi N., et al. A. Israel, Functional interaction between SEL-10, an F-box protein, and the nuclear form of activated Notch1 receptor, J. Biol. Chem. 276 34371–34378(2001).
[93] Oberg C., et al. The Notch intracellular domain is ubiquitinated and negatively regulated by the mammalian Sel-10 homolog, J. Biol. Chem. 276 35847–35853(2001).
[94] Kimura T., et al. hCDC4b, a regulator of cyclin E, as a direct transcriptional target of p53, Cancer Sci. 94 431–436(2003).
[95] Mao J.H., et al. Fbxw7/Cdc4 is a p53-dependent, haploinsufficient tumour suppressor gene, Nature 432 775–779(2004).
[96] Balamurugan K., et al. The tumour suppressor C/EBPdelta inhibits FBXW7 expression and promotes mammary tumour metastasis, EMBO J. 29 4106–4117(2010).
[97] Huang H.L., et al. Triggering Fbw7-mediated proteasomal degradation of c-Myc by oridonin induces cell growth inhibition and apoptosis, Mol. Cancer Ther. 11 1155–1165(2012).
[98] Ma J., et al. Genistein down-regulates miR-223 expression in pancreatic cancer cells, Curr. Drug Targets 14 1150–1156 (2013).
[99] Wang Z., et al. Skp2: a novel potential therapeutic target for prostate cancer, Biochim. Biophys. Acta 1825 11–17(2012).
[100] Yu Z.K., Gervais J.L., Zhang H., Human CUL-1 associates with the SKP1/SKP2 complex and regulates p21(CIP1/WAF1) and cyclin D proteins, Proc. Natl. Acad. Sci. 95 11324–11329(1998).
[101] Tsvetkov L.M., et al. p27(Kip1) ubiquitination and degradation is regulated by the SCF(Skp2) complex through phosphorylated Thr187 in p27, Curr. Biol. 9 661–664(1999).
[102] Kamura T., et al. Degradation of p57Kip2 mediated by SCFSkp2- dependent ubiquitylation, Proc. Natl. Acad. Sci. 100 10231–10236(2003).
[103] Inuzuka H., et al. Acetylation-dependent regulation of Skp2 function, Cell 150 179–193(2012).
[104] Huang H., et al. Skp2 inhibits FOXO1 in tumor suppression through ubiquitin-mediated degradation, Proc. Natl. Acad. Sci. U.S.A. 102 1649–1654(2005).
[105] Chan C.H., et al. Regulation of Skp2 expression and activity and its role in cancer progression, Sci. World J. 10 1001–1015(2010).
[106] Chen Q., et al. Targeting the p27 E3 ligase SCF(Skp2) results in p27- and Skp2-mediated cell-cycle arrest and activation of autophagy, Blood 111 4690–4699(2008).
[107] Roy S., et al. p21 and p27 induction by silibinin is essential for its cell cycle arrest effect in prostate carcinoma cells, Mol. Cancer Ther. 6 2696–2707(2007).
[108] Yang E.S., Burnstein K.L., Vitamin D inhibits G1 to S progression in LNCaP prostate cancer cells through p27Kip1 stabilization and Cdk2 mislocalization to the cytoplasm, J. Biol. Chem. 278 46862–46868(2003).
[109] Huang H.C., Lin C.L., Lin J.K.,1,2,3,4,6-penta-O-galloyl-beta-D- glucose, quercetin, curcumin and lycopene induce cell-cycle arrest in MDA-MB-231 and BT474 cells through downregulation of Skp2 protein, J. Agric. Food Chem. 59 6765–6775(2011).
[110] Huang H.C., Way T.D., Lin C.L., Lin J.K., EGCG stabilizes p27kip1 in E2-stimulated MCF-7 cells through down-regulation of the Skp2 protein, Endocrinology 149 5972–5983(2008).
[111] Busino L., et al. Degradation of Cdc25A by beta-TrCP during S phase and in response to DNA damage, Nature 426 87–91(2003).
[112] Jin J., et al. SCFbeta-TRCP links Chk1 signaling to degradation of the Cdc25A protein phosphatase, Genes Dev. 17 3062–3074 (2003).
[113] Winston J.T., et al. The SCF beta–TRCP–ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IkappaBalpha and beta-catenin and stimulates IkappaBalpha ubiquitination in vitro, Genes Dev. 13 270–283(1999).
[114] Inuzuka H., et al. Phosphorylation by casein kinase I promotes the turnover of the Mdm2 oncoprotein via the SCF(beta-TRCP) ubiquitin ligase, Cancer Cell 18 147–159(2010).
[115] Strack P., et al. SCF(beta-TRCP) and phosphorylation dependent ubiquitination of I kappa B alpha catalyzed by Ubc3 and Ubc4, Oncogene 19 3529–3536(2000).
[116] Dorrello N.V., et al. S6K1- and betaTRCP-mediated degradation of PDCD4 promotes protein translation and cell growth, Science 314 467–471(2006).
[117] Xu Y., et al. Role of CK1 in GSK3beta-mediated phosphorylation and degradation of snail, Oncogene 29 3124–3133(2010).
[118] Muerkoster S., et al. Increased expression of the E3-ubiquitin ligase receptor subunit betaTRCP1 relates to constitutive nuclear factor-kappaB activation and chemoresistance in pancreatic carcinoma cells, Cancer Res. 65 1316–1324(2005).
[119] Kudo Y., et al. Role of F-box protein betaTrcp1 inmammary gland development and tumorigenesis, Mol. Cell. Biol. 24 8184–8194(2004).
[120] Tang W., et al. Targeting beta-transducin repeat-containing protein E3 ubiquitin ligase augments the effects of antitumor drugs on breast cancer cells, Cancer Res. 65 1904–1908 (2005).
[121] Blees J.S., et al. Erioflorin stabilizes the tumor suppressor Pdcd4 by inhibiting its interaction with the E3-ligase beta-TrCP1, PLoS One 7 e46567(2012).
[122] Matsushima S., et al. An Mdm2 antagonist, Nutlin-3a, induces p53-dependent and proteasome-mediated poly(ADPribose) polymerase1 degradation in mouse fibroblasts, Biochem. Biophys. Res. Commun. 407 557–561(2011).
[123] Issaeva N., et al. Small molecule RITA binds to p53, blocks p53– HDM-2 interaction and activates p53 function in tumors, Nat. Med. 10 1321–1328(2004).
[124] Gu H., et al. Gambogic acid mediates apoptosis as a p53 inducer through down-regulation of mdm2 in wild-type p53-expressing cancer cells, Mol. Cancer Ther. 7 3298–3305(2008).
[125] Yang Y., et al. Small molecule inhibitors of HDM2 ubiquitin ligase activity stabilize and activate p53 in cells, Cancer Cell 7 547–559(2005).
[126] Hedstrom E., et al. Tumor-specific induction of apoptosis by a p53-reactivating compound, Exp. Cell Res. 315 451–461(2009).
[127] Lawrence H.R., et al. Identification of a disruptor of the MDM2–p53 protein–protein interaction facilitated by highthroughput in silico docking, Bioorg. Med. Chem. Lett. 19 3756–3759(2009).
[128] Zhang L., et al. Efficient activation of p53 pathway in A549 cells exposed to L2, a novel compound targeting p53–MDM2 interaction, Anticancer Drugs 20 416–424(2009).
[129] Lain S., et al. Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator, Cancer Cell 13 454–463(2008).
[130] Ding K., et al. Structure-based design of spirooxindoles as potent, specific small-molecule inhibitors of the MDM2–p53 interaction, J. Med. Chem. 49 3432–3435(2006).
[131] Shangary S., et al. Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition, Proc. Natl. Acad. Sci. U. S. A. 105 3933–3938(2008).
[132] Kane R. C., et al. Velcade: U.S. FDA approval for the treatment of multiple myeloma progressing on prior therapy. Oncologist. 8 508-513(2003).
[133] Genin E., Reboud-Ravaux M., Vidal J., Proteasome Inhibitors: Recent Advances and New Perspectives In Medicinal Chemistry. Curr Top Med Chem 10 232-256(2010).
[134] McConkey D. J., Zhu K., Mechanisms of proteasome inhibitor action and resistance in cancer. Drug Resist Updat. 11 164-179(2008).
[135] Li Z.W., et al. NF-kappaB in the pathogenesis and treatment of multiple myeloma. Curr Opin Hematol. 15 391-399(2008).
[136] Lonial S., et al. Risk factors and kinetics of thrombocytopenia associated with bortezomib for relapsed, refractory multiple myeloma. Blood. 106 3777–3784(2005).
[137] Lonial S., et al. Characterisation of haematological profiles and low risk of thromboembolic events with bortezomib in patients with relapsed multiple myeloma. Br. J. Haematol. 143 222-229(2008).
[138] Janz S., et al. The Novel Proteasome Inhibitor MLN9708 Demonstrates Efficacy in a Genetically-Engineered Mouse Model of DeNovo Plasma Cell Malignancy. Blood 114 3849(2009).
[139] Demo S.D., et al. Antitumor activity of PR-171, a novel irreversible inhibitor of the proteasome. Cancer Res 67 6383-91(2007).
[140] Kuhn D.J., et al. Potent activity of carfilzomib, a novel, irreversible inhibitor of the ubiquitin-proteasome pathway, against preclinical models of multiple myeloma. Blood. 110 3281-3290(2007).
[141] Buckley D.L., Crews C.M., Small-molecule control of intracellular protein levels through modulation of the ubiquitin proteasome system, Angew. Chem. Int. Ed. Engl. 53 2312–2330(2014).
[142] Ruschak A.M., et al. Novel proteasome inhibitors to overcome bortezomib resistance. J. Natl. Cancer Inst. 103 1007–1017 (2011).
[143] Gaither A, Iourgenko V. RNA interference technologies and their use in cancer research. Curr Opin Oncol 19 50-54(2007).
[144] Gao Y., et al. FAT10, an ubiquitin-like protein, confers malignant properties in non-tumorigenic and tumorigenic cells. Carcinogenesis. 35 923-34(2014).