簡易檢索 / 詳目顯示

研究生: 蕭因秀
Hsiao, Yin-Hsiu
論文名稱: 水庫淤泥合成群青之研究
Synthesis of Ultramarine from Reservoir Silts
指導教授: 雷大同
Ray, Dah-Tong
申永輝
Shen, Yun-Hwei
學位類別: 博士
Doctor
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2017
畢業學年度: 106
語文別: 中文
論文頁數: 131
中文關鍵詞: 水庫淤泥群青合成
外文關鍵詞: reservoir silts, ultramarine, synthesis
相關次數: 點閱:132下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 淤積是水庫固有的問題,全世界水庫淤積速率每年平均約為1%,但亞洲地區的淤積速率要高得多。台灣的氣候和地理條件使淤積問題特別嚴重。水庫淤積的迅速增加,使儲水量明顯下降,對水庫功能造成嚴重影響。
    本研究中以水庫淤泥替代傳統高嶺土為合成群青之原料,提供淤泥的一個再利用方式,相較於高嶺土,水庫淤泥不需要預熱處理,使其成為有競爭力的工業原料。
    本研究利用水力分級將水庫淤泥細粒部分分離出,其主要組成為石英、黏土礦物伊萊石及斜綠泥石。將細粒部分與碳酸鈉、硫和活性碳混合煅燒以探討反應條件,原料比例、煅燒時間及溫度,與產物的礦物組成及顏色性質之關係。
    產物之礦物相及形態以XRD和SEM分析,顏色性質以積分球式分光光度儀量測,並以CIE Lab系統表示。結果顯示,淤泥之矽鋁比隨分級樣粒徑減小而降低,高矽鋁比產物之青金石繞射峰及色彩屬性均低於低矽鋁比者。原料粒徑的減小可加速反應,然對於青金石相之生成與增進色彩屬性,矽鋁比更具決定性,青金石相比例最高者,產物色彩表現並非最好,在產物色彩表現上,發色基最大生成量之反應條件,為800℃、8 h,又較青金石相之結構為更關鍵之因素。
    淤泥:碳酸鈉:硫:活性碳之配比1:1.5:1.5:0.2,在800℃下煆燒8小時,為合成群青之最適參數。本研究成功合成了高彩度藍色群青粉末,最佳色度為53.47,可與商業群青競爭。

    Sedimentation is always an existing problem of reservoirs. Reservoir sedimentation occurs worldwide at a rate of about 1 percent per year, but the sedimentation rate in many regions such as Asia is much higher. The climatic and physiographic conditions of Taiwan make siltation problems particularly serious. The silt in reservoirs increases rather rapidly and the effective volume of water reserving decreases significantly, bringing about severe damage to the functions of reservoirs.
    In this study, reservoir silts were used to synthesize ultramarine, instead of the traditional kaolin clay as raw materials. The use of reservoir silts not only provides a possible usable way of the reservoir silts, also possesses advantages of free charge and easy availability. In addition, reservoir silts become potential industrial raw materials rather than wastes.
    The reservoir silt was hydraulically classified to separate out the fine part, which the main mineral composition is illite clay. The fine part was mixed with sodium carbonate, sulfur, and activated carbon, and calcined. The reaction conditions, such as raw materials ratio, calcination temperature and mineral composition of silts on the product phase and color properties, were investigated.
    The products were examined by XRD and SEM to identify the mineral phases and particle morphology. The color characteristics were measured according to the CIELab system. The results showed that the Si/Al ratio of silts decreased with the decreasing of the samples size. The diffraction peaks of lazurite and the color properties derived from high Si/Al ratio samples were inferior than those from low Si/Al ratios. The reduction of raw material particle size can speed up the reaction, however, the Si/Al ratio is more influential on the formation of lazurite phase and the color properties of the products. Highest peaks of lazurite don’t guarantee better color properties. For color performances, the reaction conditions for effective generation of chromophores are temperature and time of calcination.
    The optimal proportion of raw materials are silts: sodium carbonate: sulfur: activated carbon= 1: 1.5: 1.5: 0.2, and calcination at 800℃ for 8 h. Brilliant blue ultramarine powders were successfully synthesized with a chroma of 53.47, which is competitive with the commercial ultramarine.

    摘要 I Abstract II 致謝 XVII 目錄 XVIII 表目錄 XX 圖目錄 XXII 第1章 緒論 1 1.1 研究背景 1 1.2 研究目的 6 第2章 理論基礎與前人研究 7 2.1 台灣水庫現況 7 2.1.1 水庫分布與集水區地質條件 8 2.1.2 水庫淤積量 15 2.1.3 水庫淤泥的性質 17 2.1.4 南化水庫淤泥性質 19 2.1.5 黏土礦物 21 2.2 群青 24 2.2.1 群青的發展與用途 24 2.2.2 群青之結構與性質 27 2.2.3 群青的合成 29 2.2.4 群青呈色機制 47 2.3 色彩學理論 49 2.3.1 顏色形成之機制 49 2.3.2 CIE表色系統 49 第3章 實驗 54 3.1 實驗材料 54 3.2 設備及儀器 56 3.3 實驗設計與流程 59 第4章 結果與討論 61 4.1 水庫淤泥原樣及球磨、分級處理後樣品性質 61 4.1.1 XRD組成分析 61 4.1.2 XRF定量分析 63 4.1.3 粒徑分佈測定 64 4.2 群青合成反應 72 4.2.1 煆燒溫度 72 4.2.2 反應時間 81 4.3 粒徑及化學組成對反應產物之影響 90 4.4 鹼度、發色劑添加量及還原劑量對產物之影響 103 4.4.1 鹼度(Na2CO3 /silts ratio) 103 4.4.2 發色劑添加量((Na2CO3+S)/silts ratio) 113 4.4.3 還原劑添加量 117 第5章 結論 120 參考文獻 123 附錄 129

    [1] M. A. Chaudhry and H.-Ur-Rehman, “Worldwide Experience of Sediment Flushing Through Reservoirs,” Mehran Univ. Res. J. Eng. Technol., vol. 31, no. 3, pp. 395–408, 2012.
    [2] K. Bronsvoort, “Sedimentation in reservoirs: Investigating reservoir preservation options and the possibility of implementing Water Injection Dredging in reservoir,” MSc Thesis, Delft University of Technology Faculty, 2013.
    [3] ICOLD, “Sedimentation and Sustainable Use of Reservoirs and River Systems,” 2009.
    [4] 經濟部水利署,“經濟部水利署臺灣地區水資源投資分析104年度報告”,2016年。
    [5] 中興工程顧問公司,“氣候變遷下水庫排砂對策研究 (1/2)”,經濟部水利署,2010年。ISBN:9789860268348。
    [6] 中興工程顧問公司, “氣候變遷下水庫排砂對策研究總報告”,經濟部水利署,2011年。ISBN:9789860307610。
    [7] 高憲彰、鍾明劍、邱顯晉、許秀真及王瑋,“水庫淤泥資源再利用與市場評估-以石門水庫為例”,環境永續發展國際論壇,2009年。
    [8] 李嶸泰、劉弘祥、黃崇仁及侯秉承,“石門水庫淤泥處理對策研究”,中興工程季刊,第106期,63–71頁,2010年。
    [9] 蔡長泰及王文江,“水庫淤泥應用於國土保育之研究 (3/3)”,財團法人成大研究發展基金會,計畫編號:MOEAWRA-0950230,2006年。
    [10] 伍美玲,“台灣水庫淤泥之性質研究”,碩士論文,國立成功大學資源工程所,2009年。
    [11] B. A. Wills and J. A. Finch, “Classification,” in Wills’ Mineral Processing Technology, 2016, pp. 199–221. DOI:10.1016/B978-0-08-097053-0.00009-1.
    [12] 陳冠廷及雷大同,“水庫淤泥合成沸石及群青顏料之研究”,臺灣鑛業,第65卷,第3期,19–27頁,2013年。
    [13] 李正鴻,“2013 年臺灣礦物進出口貿易分析”,台灣鑛業,第66卷,第3期,48–59頁,2013年。
    [14] 賴允政,“台灣是水資源的過路財神”,政策研究指標資料庫,2014年。
    [15] 王鑫,“台灣大百科全書-鹽水溪” [Online]. Available: http://nrch.culture.tw/twpedia.aspx?id=1491.
    [16] 虞國興,“論台灣水資源開發的必要性”,台灣水利,第64卷,第1期,2016年。
    [17] 環興科技股份有限公司,“氣候變遷知識庫與資料整合平臺 (4/4)”, 經濟部水利署,2013年。ISBN:9789860392982。
    [18] 經濟部水利署,“104 年各標的用水統計年報”,2016年。
    [19] 國立海洋大學網路發展協會,“中華民國台灣地區水庫水壩資料”,[Online]. Available: http://ind.ntou.edu.tw/~b0137/resr/wk.htm.
    [20] 經濟部水利署水庫主題網,“水資源教室-台灣水庫的概況” [Online]. Available: http://www.e-river.tw/e_reservoir/p-4-1.aspx?id=2.
    [21] 經濟部水利署,“台灣地區民國103年蓄水設施水量營運統計報告”,2016年。
    [22] 陳培源,“台灣地質分區及架構” 於台灣地質,台灣省應用地質技師公會,2006年。ISBN:9789868197909。
    [23] M. Anderson, “Introduction to geologic features,” Taiwan: An Active Continental Subduction Zone, Mar-2001. [Online]. Available: http://www.geo.arizona.edu/~anderson/taiwan/intro.html.
    [24] “台灣變質岩的分佈” [Online]. Available: https://market.cloud.edu.tw/content/senior/earth/tp_ml/twrock/class3/location31.htm.
    [25] “台灣地區地質圖” [Online]. Available: http://volcano.gl.ntu.edu.tw/worldwide/taiwan_geologymap_large.htm.
    [26] “台灣地質的分區” [Online]. Available: https://market.cloud.edu.tw/content/junior/earth/td_jb/local/taitung/snor/snor_03/snor03_01.htm.
    [27] 經濟部中央地質調查所,“集水區地形及地質資料庫流域調查成果入口網.” [Online]. Available: http://gwh.moeacgs.gov.tw/mp/Portal/index.cfm.
    [28] 鍾朝恭及劉家盛,“石門水庫的原水濁度為何飆高”,地質,第24券,第4期,17–22頁,2005年。
    [29] 黃忠信,“水庫淤泥生態性利用之整體研究”,碩士論文,國立成功大學土木工程學系,2004年。
    [30] 顏聰及黃兆龍,“水庫淤泥輕質骨材產製及輕質骨材混凝土應用與推廣”,內政部建築研究所,2003。
    [31] 林端正、杜怡德、陳全金、石振洋及陳建志,“臺灣水庫規劃與建設”,經濟部水利署水利規劃試驗所,2017年。
    [32] “經濟部水利署水庫主題網-南化水庫” [Online]. Available: http://www.e-river.tw/e_reservoir/p.aspx?id=30.
    [33] 趙婉君,“水庫再生之浚渫規劃與管理”,崑山科技大學環境工程系專題研究報告,2010年。
    [34] 賴建龍,“南化水庫莫拉克颱風災害分析及因應對策”,台灣省自來水公司,2011年。
    [35] “Mineralogy Database.” [Online]. Available: http://webmineral.com/.
    [36] H. H. Murray, Applied clay mineralogy : occurrences, processing, and application of kaolins, bentonites, palygorskite-sepiolite, and common clays. Elsevier, 2007.
    [37] 趙杏媛及張有瑜,黏土礦物與黏土礦物分析,海洋出版社,1990年。
    [38] C. Klein, B. Dutrow, J. D. Dana, and C. Klein, Manual of Mineral Science, 23rd Edition. J. Wiley, 2007.
    [39] S. Guggenheim and R. T. Martin, “Definition of clay and clay mineral; joint report of the AIPEA nomenclature and CMS nomenclature committees,” Clays Clay Miner., vol. 43, no. 2, 1995.
    [40] 王明光,氧化物/層狀矽酸鹽之構造、特性、鑑定、反應、生成及用途,國家教育研究院臺北院區,2009年。
    [41] 陳培源、劉德慶及黃怡禎,臺灣地質系列第14號:臺灣之礦物,經濟部中央地質調查所,2003年。
    [42] D. Reinen and G.-G. Lindner, “The nature of the chalcogen colour centres in ultramarine-type solids,” Chem. Soc. Rev, vol. 28, pp. 75–84, 1999.
    [43] 黃仁達,中國顏色,聯經出版事業公司,2011年。
    [44] 伏修锋、干福熹、马波及顾冬红,“青金石產地探源”,自然科学史研究,第3卷,246–254頁,2006年。
    [45] E. Climent-Pascual, R. Sáez-Puche, A. Gómez-Herrero, and J. R.de Paz, “Cluster ordering in synthetic ultramarine pigments,” Microporous Mesoporous Mater., vol. 116, no. 1–3, pp. 344–351, 2008.
    [46] I. Hamerton, L. Tedaldi, and N. Eastaugh, “A Systematic Examination of Colour Development in Synthetic Ultramarine According to Historical Methods,” PLoS One, vol. 8, no. 2, 2013.
    [47] S. Kowalak, A. Jankowska, and S. Ła̧czkowska, “Preparation of various color ultramarine from zeolite A under environment-friendly conditions,” Catal. Today, vol. 90, no. 1–2, pp. 167–172, 2004.
    [48] W. B. Cork, “Ultramarine Pigments,” in Pigments , Inorganic , 3 . Colored Pigments, Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2009, pp. 320–325.
    [49] V. Desnica, K. Furic, and M. Schreiner, “Multianalytical Characterisation of a Variety of Ultramarine Pigments,” E-Preservation Sci., vol. 1, pp. 15–21, 2004.
    [50] E. Bartholomey and E. Bartholomey, “The Use of Ultramarine Pigments in Cosmetics,” Sofw, vol. 141, no. 3, pp. 26–32, 2015.
    [51] 盟季駱,生活中影響健康的化學及破解之道,雲書bestbook,2017年。
    [52] 廖明隆,顏料化學,台灣文源書局有限公司,1993年。
    [53] F. M.Jaeger, “On the constitution and the structure of ultramarine,” Trans. Faraday Soc., vol. 25, pp. 320–345, Jan.1929.
    [54] R. J. H. Clark and D. G. Cobbold, “Characterization of Sulfur Radical Anions in Solutions of Alkali Polysulfides in Dimethylformamide and Hexamethylphosphoramide and in the Solid State in Ultramarine Blue, Green, and Red,” Inorg. Chem., vol. 17, no. 11, pp. 3169–3174, 1978.
    [55] A. A. Landman and D.de Waal, “Fly ash as a potential starting reagent for the synthesis of ultramarine blue,” Mater. Res. Bull., vol. 39, no. 4–5, pp. 655–667, Apr.2004.
    [56] C. A. Kumins and N. Y.Tuckahoe, “Process for making ultramarine,” US2544694, 1951.
    [57] D. G. Booth, S. E. Dann, and M. T. Weller, “The effect of the cation composition on the synthesis and properties of ultramarine blue,” Dye. Pigment., vol. 58, no. 1, pp. 73–82, 2003.
    [58] A. A. Landman and D.de Waal, “Modeling sulfur clusters for an understanding of ultramarine,” South African J. Chem., vol. 58, no. 1, pp. 46–52, 2005.
    [59] J. S. Prener and R. Ward, “The Preparation of Ultramarines,” J. Am. Chem. Soc., vol. 72, no. 6, pp. 2780–2781, 1950.
    [60] S. Kowalak, M. Pawłowska, M. Miluśka, M. Stróżyk, J. Kania, and W. Przystajko, “Synthesis of ultramarine from synthetic molecular sieves,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 101, pp. 179–185, Aug.1995.
    [61] G. -G. Lindner, K. Witke, H. Schlaich, and D. Reinen, “Blue-green ultramarine-type zeolites with dimeric tellurium,” Inorganica Chim., vol. 252, no. 1–2, pp. 39–45, Nov.1996.
    [62] N. Gobeltz, A. Demortier, J. P. Lelieur, and C.Duhayon, “Encapsulation of the chromophores into the sodalite structure during the synthesis of the blue ultramarine pigment,” J. Chem. Soc., Faraday trans., vol. 94, no. 15, pp. 2257–2260, 1998.
    [63] 易发成、杨剑、宋绵新、李虎杰及蒙勇,“利用埃洛石粘土制备群青蓝的研究”,矿产综合利用,第4卷,8–12頁,2000年。
    [64] E. Kendrick, S. E. Dann, K. Hellgardt, and M. T. Weller, “The effect of different precursors of the synthesis of ultramarine blue using a modified test furnace,” Stud. Surf. Sci. Catal., vol. 154, no. 1826, pp. 3059–3066, 2004.
    [65] S. Kowalak, A. Jankowska, and S. Zeidler, “Ultramarine analogs synthesized from cancrinite,” Microporous Mesoporous Mater., vol. 93, pp. 111–118, 2006.
    [66] A. Jankowska and S. Kowalak, “Synthesis of ultramarine analogs from erionite,” Microporous Mesoporous Mater., vol. 110, pp. 570–578, 2008.
    [67] R. A. de Menezes, S. P. A.da Paz, R. S. Angélica, R. de F. Neves, and S. B. C.Pergher, “Color and shade parameters of ultramarine zeolitic pigments synthesized from kaolin waste,” Mater. Res., vol. 17, no. suppl 1, pp. 23–27, Aug.2014.
    [68] 涂华民,“化合物颜色成因簡介”,化學教育,第9卷,3–8頁,2005年。
    [69] Kurt Nassau., The physics and chemistry of color : the fifteen causes of color. New York: Wiley, 2001.
    [70] 曾啟雄,色彩的科學與文化,耶魯國際出版社,2005年。
    [71] 陳鴻興及陳詩涵,色彩工程學:理論與應用,全華圖書出版社,2008年。
    [72] N. Gobeltz, A. Demortier, J. P. Lelieur, and C.Duhayon, “Identification of the Products of the Reaction between Sulfur and Sodium Carbonate,” Inorg. Chem., vol. 37, no. 1, pp. 136–138, Jan.1998.
    [73] S. Kowalak, M. Stróżyk, M. Pawłowska, M. Miluśka, and J. Kania, “Preparation of ultramarine analogs from zeolites,” Prog. Zeolite Microporous Mater. Stud. Surf. Sci. Catal., vol. 105, pp. 237–244, 1997.
    [74] S. Kowalak and A.Jankowska, “Inorganic Sulphur Pigments Based on Nanoporous Materials,” Ordered Porous Solids, pp. 591–620, 2009.
    [75] J. P. Sancho, O. J. Restrepo, P. García, J. Ayala, B. Fernández, and L. F. Verdeja, “Ultramarine blue from Asturian ‘hard’ kaolins,” Appl. Clay Sci., vol. 41, no. 3–4, pp. 133–142, 2008.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE