簡易檢索 / 詳目顯示

研究生: 劉建聖
Liu, Chien-Sheng
論文名稱: 微型音圈馬達自動對焦致動器的設計與其光學性能分析
Design of Miniaturized Auto-Focusing VCM Actuators and Analysis of Their Optical Performances
指導教授: 林昌進
Lin, Psang-Dain
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 148
中文關鍵詞: 音圈馬達致動器自動對焦點擴散函數調制轉換函數歪斜光線追蹤
外文關鍵詞: voice coil motor, actuator, auto-focusing, PSF, MTF, skew ray-tracing
相關次數: 點閱:136下載:22
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文研究的架構分成兩大部份,一部份是微型音圈馬達自動對焦致動器的設計,另一部份是鏡頭模組的光學特性分析。
    自動對焦致動器在相機系統中是基本配備,主要功能在於調整焦距,改善成像品質;應用在手機相機中則要求微型、高性能的自動對焦致動器。因此,本文研究的架構首先發表用於手機相機之小型電磁式自動對焦致動器,它包含一音圈馬達及一閉迴路定位控制系統。該閉迴路控制系統是藉由一霍爾元件的輸出訊號(電壓)當回饋訊號,來調整移動件的位置,以達到自動對焦的功能。實驗結果顯示,跟已知的開迴路音圈馬達致動器比較起來,本文之致動器的體積較小、定位重複精度較高且能耗較低。
    影響手機相機成像品質的另一個因素是鏡頭模組本身的光學特性;點擴散函數和調制轉換函數是基本的衡量指標。點擴散函數在成像理論中扮演一個重要的角色,因為它代表一個光學系統對一點光源的反應能力。調制轉換函數代表一個光學系統對測試物的對比度反應能力,它可以藉由亮度分佈函數與線擴散函數的迴旋運算來得到。然而,推導點擴散函數與線擴散函數計算方法的文獻非常少,因此本文接著利用光能量守恆的概念,透過光線追蹤,推導出一套新的點擴散函數計算方法與不需線擴散函數的調制轉換函數計算方法,並用自動對焦致動器的鏡頭模組來評估此方法的效能。結果顯示,跟已知的計算光線方法比較起來,本文之計算方法能得到較高的精度與較佳的效率。

    This study includes two parts: Part I proposes miniaturized auto-focusing actuators for cell phone camera modules; and Part II presents the analysis of the optical performance of lens modules for cell phone camera modules.
    Focus adjustment is one of the most basic functionalities in all imaging systems, and can be used to improve image quality. In particular, a requirement exists for compact, high-performance auto-focusing actuators for the camera modules deployed in cell phones. Therefore, this study presents novel miniaturized electromagnetic-based actuators comprised of a voice coil motor (VCM) and a closed-loop position control system in which auto-focusing capability is achieved by using a position feedback signal generated by a Hall element to dynamically adjust the position of the lens module for auto-focusing cell phone camera modules. The results show that the proposed actuators are not only smaller than conventional VCM actuators with an open-loop positioning system, but also have improved positioning repeatability and lower power consumption.
    Another factor that affects the image quality of cell phone camera modules is the performance of the lens module, in which the geometrical point spread function (PSF) and the modulation transfer function (MTF) are two basic concerns. The PSF plays an important role in the image formation theory, since it describes the impulse response of an optical system to a source point. The MTF is a measurement of an optical system’s ability to transfer contrast from the specimen to the image plane at a specific resolution. The MTF can be computed by convolution of the object brightness distribution function with the line spread function (LPS). However, very few techniques for deriving the PSF of optical systems and real LPSs are rarely (if ever) represented in the literature. In order to overcome these difficulties, this study then presents a new method based on an irradiance model for computing the geometrical PSF of an optical system by considering the energy conservation along a single light ray and a new MTF computation method of an optical system from ray-tracing data without its LPS.

    摘要 I ABSTRACT II ACKNOWLEDGEMENTS IV CONTENT V TABLE CAPTIONS VIII FIGURE CAPTIONS IX NOMENCLATURE XIV Chapter 1 INTRODUCTION 1 1.1 Motivation 1 1.2 Organization of the dissertation 4 Chapter 2 LITERATURE REVIEW 7 2.1 Auto-focusing actuator 7 2.2 Principles of geometrical optics 16 2.3 Ray-tracing 19 2.4 Homogeneous coordinates 21 2.5 Geometrical PSF 27 2.6 MTF 29 Chapter 3 DESIGN AND CHARACTERIZATION OF MINIATURIZED TYPE I VCM ACTUATOR 34 3.1 Conventional VCM actuator 35 3.2 Structure of Type I VCM actuator 37 3.3 Design of the shaft-hole length 39 3.4 Electromagnetic design of Type I VCM actuator 41 3.5 Electronic circuit design 53 3.6 Experimental characterization of Type I VCM actuator 55 3.7 Summary 67 Chapter 4 A NEW COMPUTATIONAL METHOD FOR DERIVING THE GEOMETRICAL POINT SPREAD FUNCTION OF OPTICAL SYSTEMS 69 4.1 Skew ray-tracing at flat and spherical boundary surfaces 70 4.2 Jacobian matrix 76 4.3 Theory of PSF 80 4.4 Spot size of source point 84 4.5 Verification of illustrative example 85 4.6 Summary 90 Chapter 5 A NEW COMPUTATIONAL METHOD FOR DERIVING THE MODULATION TRANSFER FUNCTION OF OPTICAL SYSTEMS 92 5.1 Theory of MTF 92 5.2 MTF computation without LSF 95 5.3 Verification of illustrative example 97 5.4 Summary 101 Chapter 6 DESIGN AND CHARACTERIZATION OF MINIATURIZED TYPE II VCM ACTUATOR WITH ZERO HOLDING CURRENT 102 6.1 Structure of Type II VCM actuator 103 6.2 Electromagnetic design of Type II VCM actuator 106 6.3 Effects of the shaft-hole clearance on the sensed magnetic flux density 110 6.4 Experimental characterization of Type II VCM actuator 114 6.5 Summary 123 Chapter 7 CONCLUSIONS AND SUGGESTIONS 125 7.1 Conclusions 125 7.2 Applications 127 7.3 Suggestions 128 REFERENCES 130 APPENDIX A 140 APPENDIX B 141 APPENDIX C 142 APPENDIX D 143 APPENDIX E 144 PUBLICATIONS 145 VITA 147 自述 148

    1. S. M. Sohn, S. H. Yang, S. W. Kim, K. H. Baek, and W. H. Paik, “SoC design of an auto-focus driving image signal processor for mobile camera applications,” IEEE Trans. Consum. Electron., vol. 52, pp. 10-16, 2006.
    2. C. W. Chiu, P. C.-P. Chao, and D. Y. Wu, “Optimal design of magnetically actuated optical image stabilizer mechanism for cameras in mobile phones via genetic algorithm,” IEEE Trans. Magn. vol. 43, pp. 2582-2584, 2007.
    3. K. H. Kim, S. Y. Lee, and S. Kim, “A mobile auto-focus actuator based on a rotary VCM with the zero holding current,” Opt. Express, vol. 17, pp. 5891-5896, 2009.
    4. Standard Mobile Imaging Architecture, http://www.smia-forum.org/
    5. H. Ren, D. Fox, P. A. Anderson, B. Wu, and S. T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express, vol. 14, pp. 8031-8036, 2006.
    6. H. Ren and S. T. Wu, “Variable-focus liquid lens,” Opt. Express, vol. 15, pp. 5931-5936, 2007.
    7. C. C. Cheng, C. A. Chang, and J. A. Yeh, “Variable focus dielectric liquid droplet lens,” Opt. Express, vol. 14, pp. 4101-4106, 2006.
    8. K. Campbell, Y. Fainman, and A. Groisman, “Pneumatically actuated adaptive lenses with millisecond settling time,” Appl. Phys. Lett., vol. 91, pp. 171111-1-171111-3, 2007.
    9. S. W. Lee and S. S. Lee, “Focal tunable liquid lens integrated with an electromagnetic actuator,” Appl. Phys. Lett., vol. 90, pp. 121129-1-121129-3, 2007.
    10. W. J. Smith, Modern Optical Engineering (3rd ed., Edmund Industrial Optics, Barrington, New Jersey, 2001).
    11. http://shicoh.altecs.jp/ir070903.pdf
    12. M. Murphy, M. Conway, and G. Casey, “Lens drivers focus on performance in high-resolution camera modules,” Analog Dialogue 40-11, pp. 1-3, 2006.
    13. http://www.shicoh.com/autofocus.htm
    14. H. C. Yu, T. Y. Lee, S. J. Wang, M. L. Lai, J. J. Ju, D. R. Huang, and S. K. Lin, “Design of a voice coil motor used in the focusing system of a digital video camera,” IEEE Trans. Magn., vol. 41, pp. 3979-3981, 2005.
    15. H. C. Yu, T. Y. Lee, S. K. Lin, L.T. Kuo, S. J. Wang, J. J. Ju, and D. R. Huang, “Low power consumption focusing actuator for a mini video camera,” J. Appl. Phys., vol. 99, pp. 08R901-1-08R901-3, 2006.
    16. M. J. Chung, “Development of compact auto focus actuator for camera phone by applying new electromagnetic configuration,” Proc. SPIE, vol. 6048, pp. 60480J-1-60480J-9, 2005.
    17. H. C. Yu and T. S. Liu, “Adaptive model-following control for slim voice coil motor type optical image stabilization actuator,” J. Appl. Phys., vol. 103, pp. 07F114-1-07F114-3, 2008.
    18. S. K. Lin, C. M. Wang, and S. J. Wang, “Design and implementation of antihandshaking position control for a voice coil motor,” J. Appl. Phys., vol. 103, pp. 07F128-1-07F128-3, 2008.
    19. S. Manabu and Y. Morimasa, “Lens drive device,” PAJ 2002-365514, 2002.
    20. S. Manabu, S. Naoki, Y. Morimasa, and C. Yosuke, “Lens driving apparatus,” PAJ 2005-128405, 2005.
    21. P. C.-P. Chao, C. W. Chiu, H. K. Liang, and N. Y.-Y. Kao, “Intelligent actuation strategy via image feedbacks for a magnetically actuated autofocusing module in mobile phones,” J. Appl. Phys., vol. 103, pp. 07F123-1-07F123-3, 2008.
    22. P. C.-P. Chao and S. C. Wu, “Optimal design of magnetic zooming mechanism used in cameras of mobile phones via genetic algorithm,” IEEE Trans. Magn., vol. 43, pp. 2579-2581, 2007.
    23. C. W. Chiu, P. C.-P. Chao, N. Y.-Y. Kao, and F. K. Young, “Optimal design and experimental verification of a magnetically actuated optical image stabilization system for cameras in mobile phones,” J. Appl. Phys., vol. 103, pp. 07F136-1-07F136-3, 2008.
    24. Y. Hidekazu, F. Yuji, A. Takahiro, K. Shinichi, and T. Toshifumi, “Lens driving device,” US Patent 6856469, 2005.
    25. M. G. Song, Y. J. Hur, N. C. Park, K. S. Park, Y. P. Park, S. C. Lim, and J. H. Park, “Design of a voice-coil actuator for optical image stabilization based on genetic algorithm,” IEEE Trans. Magn., vol. 45, pp. 4558-4561, 2009.
    26. http://www.nidec-sankyo.co.jp/e/pro/device_motor.htm
    27. http://www.1limited.co.uk/
    28. http://www.newscaletech.com/
    29. H. P. Ko, S. Kim, S. N. Borodinas, P. E. Vasiljev, C. Y. Kang, and S. J. Yoon, “A novel tiny ultrasonic linear motor using the radial mode of a bimorph,” Sens. Actuators A, vol. 125, pp. 477-481, 2006.
    30. H. P. Ko, H. Jeong, and B. Koc, “Piezoelectric actuator for mobile auto focus camera applications,” J. Electroceram., vol. 23, pp. 530-535, 2009.
    31. T. Y. Zhou, Y. Zhang, Y. Chen, C. Y. Lu, D. Y. Fu, Y. Li, and X. P. Hu, “A nut-type ultrasonic motor and its application in the focus system,” Chin. Sci. Bull., vol. 54, pp. 3778-3783, 2009.
    32. http://www.usinenouvelle.com/expo/varioptic-3678/offre.html
    33. Y. J. Chang, K. Mohseni, and V. M. Bright, “Fabrication of tapered SU-8 structure and effect of sidewall angle for a variable focus microlens using EWOD,” Sens. Actuators A, vol. 136, pp. 546-553, 2007.
    34. S. Reichelt and H. Zappe, “Design of spherically corrected, achromatic variable-focus liquid lenses,” Opt. Express, vol. 15, pp. 14146-14154, 2007.
    35. H. Ren, H. Xianyu, S. Xu, and S. T. Wu , “Adaptive dielectric liquid lens,” Opt. Express, vol. 19, pp. 14954-14960, 2008.
    36. K. S. Hong, J. Wang, A. Sharonov, D. Chandra, J. Aizenberg, and S. Yang, “Tunable microfluidic optical devices with an integrated microlens array,” J. Micromech. Microeng., vol. 16, pp. 1660-1666, 2006.
    37. F. S. Tsai, S. H. Cho, Y. H. Lo, B. Vasko, and J. Vasko, “Miniaturized universal imaging device using fluidic lens,” Opt. Lett., vol. 33, pp. 291-293, 2008.
    38. Z. Feng, S. Feng, Z. Y. Li, K. Ren, B. Y. Cheng, and D. Z. Zhang, “Influence of surface termination morphologies on the imaging properties of a composite two-dimensional photonic crystal lens,” J. Appl. Phys., vol. 100, pp. 053702-1-53702-3, 2006.
    39. T. Nose, S. Masuda, and S. Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys., vol. 31, pp. 1643-1646, 1992.
    40. Y. Choi, J. H. Park, J. H. Kim, and S. D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater., vol. 21, pp. 643-646, 2003.
    41. H. Ren, Y. H. Fan, and S. T. Wu, “Liquid-crystal microlens arrays using patterned polymer networks,” Opt. Lett., vol. 29, pp. 1608-1610, 2004.
    42. H. Ren, D. W. Fox, B. Wu, and S. T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express, vol. 15, pp. 11328-11335, 2007.
    43. M. Ye, B. Wang, and S. Sato, “Realization of liquid crystal lens of large aperture and low driving voltages using thin layer of weakly conductive material,” Opt. Express, vol. 16, pp. 4302-4308, 2008.
    44. J. L. Wang, T. Y. Chen, C. W. Liu, C. W. E. Chiu, and G. D. J. Su, “Polymer deformable mirror for optical auto focusing,” ETRI J., vol. 29, pp. 817-819, 2007.
    45. J. L. Wang, T. Y. Chen, Y. H. Chien, and G. D. J. Su, “Miniature optical autofocus camera by micromachined fluoropolymer deformable mirror,” Opt. Express, vol. 17, pp. 6268-6274, 2009.
    46. H. K. Lee, N. J. Choi, S. Jung, K. H. Park, H. Jung, J. K. Shim, J. W. Ryu, and J. Kim, “Electroactive polymer actuator for lens-drive unit in auto-focus compact camera module,” ETRI J., vol. 31, pp. 695-702, 2009.
    47. http://www.capv.com/public/Content/Press/2008/07.29.2008.html
    48. http://en.wikipedia.org/wiki/Voice_coil
    49. B. S. Guru and H. R. Hiziroglu, Electromagnetic Field Theory Fundamentals (PWS Publishing Company, Boston, 1998).
    50. http://www.toya.net.pl
    51. W. J. Ho, “Multi-stage miniature actuating apparatus for lens,” TW Patent M305361, 2007.
    52. 吳金舫,“用於自動對焦之新型致動器設計Novel actuator design for the auto-focusing system,” 國立中興大學機械工程學系,碩士論文 2007。
    53. Y. K. Tseng, “Voice coil motor positioning apparatus,” TW Patent I239432, 2005.
    54. Y. K. Tseng, “Voice coil motor apparatus,” TW Patent I303915, 2008.
    55. 許智達,“用於自動對焦數位相機之音圈馬達及其伺服控制IC之分析與設計Design and analysis of a voice coil motor with the servo control IC for auto-focusing digital cameras,” 國立交通大學電機與控制工程學系,碩士論文 2006。
    56. S. M. Jang, J. Y. Choi, S. H. Lee, H. W. Cho, and W. B. Jang, “Analysis and experimental verification of moving-magnet linear actuator with cylindrical Halbach array,” IEEE Trans. Magn., vol. 40, pp. 2068-2070, 2004.
    57. Y. Hirano and J. Naurse, “Dynamic characteristics of a voice coil motor for a high performance disk drive,” IEEE Trans. Magn., vol. 25, pp. 3073-3075, 1989.
    58. M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1985).
    59. J. Morgan, Introduction to Geometrical and Physical Optics (McGraw-Hill, New York, 1953).
    60. R. S. Longhurst, Geometrical and Physical Optics (3rd ed., Longman Inc., New York, 1973).
    61. E. Hecht, Optics (3rd ed., Addison Wesley Longman Inc., New York, 1998).
    62. R. P. Paul, Robot Manipulators-Mathematics, Programming and Control (MIT press, Cambridge, Massachusetts, 1982).
    63. J. D. Foley, A. V. Dam, S. K. Feiner and J. F. Hughes, Computer Graphics Principles and Practices (2nd Edition, Addision-Wesley Publishing Company, 1981).
    64. C. H. Wu, “Robot accuracy analysis based on kinematics,” IEEE J. Robot. Autom., vol. RA-2/3, pp. 171-179 , 1986.
    65. J. Denavit and R. S. Hartenberg, “A kinematic notation for lower pair mechanisms based on matrices,” ASME J. Appl. Mech., vol. 77, pp. 215-221, 1955.
    66. J. J. Uicker, “On the dynamic analysis of spatial linkages using 4x4 matrices,” Dissertation for Doctor of Philosophy, Northwestern University, Evanston, ILL., 1965.
    67. P. D. Lin and C. Y. Tsai, “First-order gradients of skew rays of axis-symmetrical optical systems,” J. Opt. Soc. Am. A, vol. 24, pp. 776-784, 2007.
    68. P. D. Lin and C. H. Lu, “Analysis and design of optical system by use of sensitivity analysis of skew ray tracing,” Appl. Opt., vol. 43, pp. 796-807, 2004.
    69. P. D. Lin and C. K. Sung, “Camera calibration based on Snell’s law,” J. Dyn. Syst. Meas. Control-Trans. ASME, vol. 128, pp. 548-557, 2006.
    70. P. D. Lin and C. Y. Tsai, “General method for determining the first order gradients of skew rays of optical systems with noncoplanar optical axes,” Appl. Phys. B, vol. 91, pp. 621-628, 2008.
    71. 蔡忠佑,“稜鏡成像位姿變化之分析與設計Prisms analysis and design base on image orientation change,” 國立成功大學機械工程學系,博士論文 2007。
    72. http://en.wikipedia.org/wiki/Point_spread_function
    73. M. Schrader and S. W. Hell, “Wavefronts in the focus of a light microscope,” J. Microsc.-Oxf., vol. 184, pp. 143-148, 1996.
    74. R. Juškaitis and T. Wilson, “The measurement of the amplitude point spread function of microscope objective lenses,” J. Microsc.-Oxf., vol. 189, pp. 8-11, 1998.
    75. A. Andersson and S. C. Leemann, “Experimental determination of the point-spread function for the optical diagnostics setup at the 100 keV gun test stand,” SLS Internal Reports, SLS-TME-TA-2005-0278, 2005.
    76. V. N. Mahajan, Optical Imaging and Aberrations part I Ray Geometrical Optics (SPIE- The Interational Society for Optical Engineering, 1998).
    77. S. K. Park, R. Schowengerdt, and M. Kaczynski, “Modulation-transfer-function analysis for sampled image system,” Appl. Opt., vol. 23, pp. 2572-2582, 1984.
    78. C. Michail, A. Toutountzis, S. David, N. Kalyvas, I. Valais, I. Kandarakis, and G. S. Panayiotakis, “Imaging performance and light emission efficiency of Lu2 SiO5:Ce (LSO:Ce) powder scintillator under X-ray mammographic conditions,” Appl. Phys. B, vol. 95, pp.131-139, 2009.
    79. L. M. Portsel, V. M. Marchenko, S. Matern, and H. G. Purwins, “Experimental study of spatial resolution of a semiconductor–gas discharge infrared image converter,” Appl. Phys. B, vol. 81, pp. 1009-1014, 2005.
    80. G. Indebetouw, “Some experiments in partially coherent imaging and modulation transfer function evaluation,” Appl. Phys. B, vol. 32, pp. 21-24, 1983.
    81. S. Fantone, “Modulation-transfer-function testing provides a clear assessment of imaging system performance,” SPIE Newsroom, DOI: 10.1117/2.5200403.0008, 2004.
    82. http://www.jiscdigitalmedia.ac.uk/images/usaf1951.gif
    83. G. C. Holst, Testing and Evaluation of Infrared Imaging Systems (2nd ed., JCD Publishing, Florida, 1998).
    84. S. C. Chapra and R. P. Canale, Numerical Methods for Engineers (5th ed., McGraw-Hill, New York, 2006).
    85. S. Inoue, N. Tsumura, and Y. Miyake, “Measuring MTF of paper by sinusoidal test pattern projection,” J. Imaging Sci. Technol., vol. 41, pp. 657-661, 1997.
    86. G. D. Boreman and S. Yang , “Modulation transfer function measurement using three- and four-bar targets,” Appl. Opt., vol. 34, pp. 8050-8052, 1995.
    87. D. N. Sitter, J. S. Goddard, and R. K. Ferrell, “Method for the measurement of the modulation transfer function of sampled imaging systems from bar-target patterns,” Appl. Opt., vol. 34, pp. 746-751, 1995.
    88. R. Barakat, “Determination of the optical transfer function directly from the edge spread function,” J. Opt. Soc. Am., vol. 55, pp. 1217-1221, 1965.
    89. P. G. Engeldrum and B. Pridham, “Application of turbid medium theory to paper spread function measurements,” Tech. Assoc. Graphic Arts Proc., vol. 47, pp. 339-347, 1995.
    90. G. L. Rogers, “Measurement of the modulation transfer function of paper,” Appl. Opt., vol. 37, pp. 7235-7240, 1998.
    91. J. C. Ryu and Y. H. Cho, “Transverse electromagnetic microactuators using electroplated planar coil driven by symmetric twin magnets,” Sens. Mater., vol. 19, pp. 107-121, 2007.
    92. Z. Hong, L. Weiwei, B. Shuxin, and C. Ke, “Periodic permanent magnet focusing system with high peak field,” J. Magn. Magn. Mater., vol. 320, pp. 1675-1679, 2008.
    93. http://www.asahi-kasei.co.jp/ake/en/product/hall/file/hg-0113_e.pdf
    94. http://en.wikipedia.org/wiki/PID_controller
    95. http://www.fujinon.co.jp/en/products/cctv/pdf/k_4.pdf
    96. L. Larmore, Introduction to Photographic Principles (2nd ed., Dover Publications, New York, 1965).
    97. http://www.largan.com.tw/all-list.htm
    98. C. C. Hsueh and P. D. Lin, “Computationally efficient gradient matrix of optical path length in axisymmetric optical systems,” Appl. Opt., vol. 48, pp.893-902, 2009.
    99. D. L. Shealy and D. G. Burkhard, “Caustic surface merit functions in optical design,” J. Opt. Soc. Am., vol. 66, pp. 1122, 1976.
    100. A. M. Kassim, D. L. Shealy, and D. G. Burkhard, “Caustic merit function for optical design,” Appl. Opt., vol., 28, pp. 601-606, 1989.
    101. J. W. Foreman, “Computation of RMS spot radii by ray tracing,” Appl. Opt., vol. 13, pp. 2585-2588, 1974.
    102. T. B. Andersen, “Evaluating RMS spot radii by ray tracing,” Appl. Opt., vol. 21, pp. 1241-1248, 1982.
    103. B. Brixner, “Lens design merit functions: rms image spot size and rms optical path difference, “Appl. Opt., vol. 17, pp. 715-716, 1978.
    104. E. Hecht, Optics (3rd ed., Addison Wesley Longman Inc., New York, 1998).
    105. T. T. Liao and P. D. Lin, “Analysis of optical elements with flat boundary surfaces,” Appl. Opt., vol. 42, pp. 1191-1202, 2003.
    106. P. D. Lin and T. T. Liao, “Skew-ray tracing and sensitivity analysis of geometrical optics “, J. Manuf. Sci. Eng.-Trans. ASME, vol. 122, pp. 338-349, 2000.
    107. 廖德潭,“雙照相機立體成像系統的建模與分析Analysis and modeling of two-CCD camera stereo vision system,” 國立成功大學機械工程學系,博士論文,2003。
    108. 盧嘉鴻,“雷射追蹤器的光學建模與分析Optical modeling and analysis of laser tracker,” 國立成功大學機械工程學系,博士論文,2004。
    109. M. Laikin, Lens Design (2nd ed., New York, Marcel Dekker Inc., 1995).
    110. 漳宏瑋,“二百萬畫素照相手機鏡頭之光學設計Optical design for two million pixels mobile phone camera,” 國立中興大學精密工程研究所,碩士論文,2006。
    111. H. Teramachi, “Linear slide bearing,” US Patent 4576421, 1986.
    112. C. C. Wang, Y. D. Yao, C. S. Liu, and L. Y. Cheng, “Micro magnetic suspension motor for miniature optical drive, ” Jpn. J. Appl. Phys., vol. 45, pp. 5801-5803, 2006.

    下載圖示 校內:2020-12-31公開
    校外:2020-12-31公開
    QR CODE