簡易檢索 / 詳目顯示

研究生: 李吉龍
Li, Ji-Lung
論文名稱: 時頻分析法應用於基樁及版之非破壞檢測評估
Application of Time-Frequency Analysis for Non-Destructive Evaluation of the Pile and Plate
指導教授: 倪勝火
Ni, Sheng-Huoo
學位類別: 博士
Doctor
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 148
中文關鍵詞: 非破壞檢測音波回音法複數連續小波轉換敲擊回音法希爾伯特-黃轉換互補式總體經驗模態分解
外文關鍵詞: Non-destructive testing, sonic echo method, CCWT, impact echo method, HHT, CEEMD
相關次數: 點閱:101下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 非破壞性檢測之重要性,在於不破壞結構物下評估其功能;於基樁,常以音波回音法進行檢測;於版,則常以敲擊回音法進行檢測。但因反射應力波是非穩態訊號、結構量體及環境因素等影響,訊號常過於複雜及微弱,僅從時間域或頻率域不易準確評估,因而本研究提出時頻分析方法以提升評估結果。
    本研究提出以複數連續小波之訊號處理方法,改善基樁音波回音法之訊號分析結果。經有系統化選擇出適合的母小波函數,再利用複數小波之伸縮、平移及相位特性,使得應力波波形特徵現象更易於判讀,同時提出複數母小波選擇方式及基樁完整性評估方法。經由數值模擬及現地試驗,將此方法應用於常見不同基樁形式及土層條件,並予以完整探討。結果顯示,即使是不同缺陷、材料、結構形式及樁底條件之基樁,量測訊號經由複數連續小波轉換,可由頻譜振幅圖顯示缺陷或不連續結構之訊號特徵,並可由相譜圖位更有效判識基樁材質變化及缺陷位置等,提供更客觀的解決方式及減少人為因素誤差;相較於傳統時域分析,可有效提升基樁評估之準確性。
    敲擊回音波常用於評估混凝土版厚度和內部狀況的低應變完整性檢測,主要藉由沿版厚方向傳播的振動訊號進行評估。但測量所得的訊號包含表面波、反射波及來自環境的噪聲等,這些訊號影響版完整性的檢測結果。本研究採用基於互補式總體經驗模態分解的希爾伯特-黃變換,利用其自適應性及適合處理非穩態訊號的特性,有效區分和解釋敲擊回音法訊號的組成。互補式總體經驗模態分解可將訊號分解成數個本質模態函數,該函數是具有物理意義的成分訊號,且可減少模態混疊及最終殘值,而該方法的關鍵參數是通過幅值平方同調性分析進行評估選擇,所擇定的參數值性能經由數值模擬及模型試驗結果獲得驗證。同時使用希爾伯特頻譜加強判釋敲擊回音訊號的組成及物理特性。而在獲得界面回波的本質模態函數後,除運用所對應的主控尖峰頻率來計算界面位置外,還提出利用本質模態函數之相位訊息進行計算分析,結果表明所提出之方法可成功評估版厚及缺陷位置。

    The objective of this paper is using time-frequency analysis to improve the integrity assessment of non-destructive testing for the pile and plate. The combination of sonic echo (SE) method and complex continuous wavelet transform (CCWT) is used to evaluate the integrity of pile. The signal analyzed by CCWT contains rich information about amplitude-frequency and phase-frequency. After analyzing 3D amplitude and phase spectrum, the reflection signal of the interface can be identified effectively. The simulated piles and the in-situ piles are tested successfully to verify the suitability of the proposed approach. Comparing with traditional time-domain analysis of SE method, it improves the accuracy of the depth of the defect, pile length, and pile-tip condition. Furthermore, it reduces the man-made error. The combination of impact echo (IE) method and Hilbert-Huang transform (HHT) is used to evaluate the integrity of plate. HHT based on complementary ensemble empirical mode decomposition (CEEMD) is used to analyze IE signals. The signal is broken down into several meaningful ingredients called intrinsic mode functions (IMFs). After obtaining the IMF of echo wave, the corresponding frequency of the peak magnitude is used to calculate the interface position. In addition, an approach using the phase information of IMF is proposed to determine the depth of the interface. It is successful in simulated plate and model tests. The result shows that the proposed method is suitable for plate integrity assessment.

    目 錄 I 表目錄 V 圖目錄 VI 符 號 XIII 英文名詞縮寫 XVII 第一章 緒論 1 1.1 研究動機及目的 1 1.2 研究方法 2 1.3 研究內容 3 第二章 國內外文獻回顧 5 2.1 前言 5 2.2音波回音法之回顧 5 2.3敲擊回音法之回顧 7 2.4連續小波轉換之回顧 8 2.5希爾伯特-黃轉換之回顧 12 第三章 非破壞檢測方法及理論 15 3.1 前言 15 3.2 應力波傳型式 15 3.3樁之應力波檢測方法 21 3.3.1音波回音法 21 3.3.2基樁波傳理論 22 3.4版之應力波檢測方法 28 3.4.1敲擊回音法 28 3.4.2版波傳理論 30 第四章 時頻分析 33 4.1時頻分析概述及分類 33 4.2傅立葉轉換 33 4.3短時傅立葉轉換 35 4.4小波轉換 36 4.4.1小波介紹 36 4.4.2 連續小波轉換 37 4.4.3 複數連續小波轉換 39 4.4.4 振幅頻譜圖 40 4.4.5 相譜圖 40 4.4.6母小波的選擇原則 41 4.5希爾伯特-黃轉換 43 4.5.1希爾伯特-黃轉換介紹 43 4.5.2經驗模態分解 44 4.5.3總體經驗模態分解 45 4.5.4互補式總體經驗模態分解 46 4.6各分析域比較 48 4.6.1時間域 48 4.6.2頻率域 48 4.6.3時間頻率域 48 4.7以CCWT評估基樁之完整性 52 4.8以HHT評估版之完整性 56 第五章 數值訊號模擬分析 59 5.1 數值模型建立 59 5.1.1前言 59 5.1.2 ABAQUS與有限元素法 60 5.1.3分析模型之網格 60 5.1.4衝擊外力之定義 61 5.1.5元素與時間增量 62 5.1.6材料組成參數 63 5.2 基樁之數值模擬結果及分析 63 5.2.1 模擬基樁之設計 63 5.2.2 適用基樁訊號之母小波 64 5.2.3 Model-A:6m自由端完整樁 67 5.2.4 Model-B:6m固定端完整樁 69 5.2.5.Model-C:6m缺陷樁(30%) 70 5.2.6模擬基樁之分析結果小結 71 5.3 版之數值模擬結果及分析 90 5.3.1模擬版之設計 90 5.3.2版訊號之CEEMD參數的選擇 90 5.3.3 EMD、EEMD及CEEMD的分析比較 93 5.3.4模擬版之分析結果 94 第六章 基樁模型及現地試驗 103 6.1前言 103 6.2儀器設備 103 6.3試驗基樁及場址描述 106 6.4 分析結果及討論 111 6.4.1基樁#1 (PC-6m) 111 6.4.2基樁#2 (PC-6m-30) 112 6.4.3基樁#3 (S-8m) 113 6.4.4基樁#4 (BP-40 ft) 114 6.4.5基樁#5 (PC-32 m) 115 6.4.6基樁#6~#7 (BP-34m;BP-52m) 115 6.5 本章小結 122 第七章 版模型試驗 125 7.1前言 125 7.2儀器設備 125 7.3模型版及場址描述 126 7.4分析結果及討論 127 7.4.1版#A 127 7.4.2版#B 128 7.5 本章小結 134 第八章 結論與建議 135 8.1結論 135 8.2建議 137 參考文獻 139 個人履歷 147

    王志坤(2008),「基於小波振幅頻譜和複小波相位頻譜的高分辨率層序劃分」,石油學報,第29卷,第6期,第865-869頁。
    尹繼堯、劉明高、趙建章,「利用時頻域地震信號相位殘點特徵檢測地層連續性」,石油地球物理勘探,第49卷,第4期,第745-750頁(2014)。
    王弘義(2003),「基樁應力波非破壞檢測技術之比較評估」,朝陽科技大學營建工程系碩士論文,台中。
    成禮智、郭漢偉(2005),「小波與離散變換理論及工程實踐」,清華大學出版社有限公司。
    李允仲(2009),「音波回音法應用於基樁完整性檢測之實驗研究」,成功大學土木工程學系碩士論文,台南。
    李青鋒、繆協興、徐金海(2007),「連續複小波變換在工程檢測數據處理中的應用」,中國礦業大學學報,第36卷,第1期,第23-26頁。
    倪勝火、廖述濤(1999),「基樁之檢測與評估」,第一屆公共工程非破壞檢測技術研討會,第166-194頁。
    倪勝火、羅國峯(2001),「小波轉換法應用於基樁音波回應法之分析研究」,中華民國非破壞檢測協會,第19卷,第1期(1-2),第4-15頁。
    彭仁相(2003),「基樁衝擊反應檢測法在現地進行參數變化與數值模式比對之研究」,中華大學土木工程學系碩士論文,新竹。
    黃烟宏(2006),「連續小波轉換應用於基樁完整性檢測之研究」,成功大學土木工程學系碩士論文,台南。
    費康、張建偉(2010),「ABAQUS 在岩土工程中的應用」,中國水利水電出版社,北京。
    葛哲學、陳仲生(2006),「Matlab 時頻分析技術及其應用」,人民郵電出版社。
    楊子彤(2017),「複數小波轉換於評估基樁長度之研究」,成功大學土木工程學系碩士論文,台南。
    楊永波(2009),「空心圓柱結構及板型結構中的導波檢測理論研究」,中國科學院研究生院(武漢岩土力學研究所)博士論文,武漢。
    楊君範(2003),「混凝土結構敲擊反應波傳研究」,碩士論文,朝陽科技大學營建工程系,台中。
    愛發股份有限公司(2005),「ABAQUS實務入門引導」,全華科技圖書股份有限公司,台北。
    盧家鋒(2013),「醫學訊號分析原理與MATLAB程式應用實作」,Available at:http://www.ym.edu.tw/~cflu/CFLu_course_matlabsig.html。
    賴正昇(2005),「脈波回音法應用於基樁之模擬與分析」,成功大學木工程學系碩士論文,台南。
    賴勇裕(2017),「複數小波轉換於偵測預力樁長度之案例研究」,成功大學土木工程學系碩士論文,台南。
    ACI Committee 318-95 (1995). Building Code Requirement Structural Concrete (ACI 318-95) and Commentary (ACI 318-75).
    Algernon, D. and Wiggenhauser, H. (2007). “Impact echo data analysis based on Hilbert-Huang transform.” Transportation Research Record: Journal of the Transportation Research Board, No. 2028, pp. 146-153.
    ASTM C1383-04 (2010). Standard Test Method for Measuring the P-Wave Speed and the Thickness of Concrete Plates Using the Impact-Echo Method, ASTM, USA, pp. 1-11.
    ASTM D5882-07 (2007). Standard Test Method for Low Strain Impact Integrity Testing of Deep Foundations, ASTM, USA, pp. 1-16.
    Bolt, B.A. (1993). Earthquake and Geological Discovery, Scientific American Library, New York.
    Boultadakis, G., Skrapas, K., and Frangos, P. (2004). “Time-frequency analysis of radar signals.” RTO/SET, Vol. 80, pp. 7-1.
    Carino, N.J., Sansalone, M., and Hsu, N.N. (1986). “Flaw detection in concrete by frequency spectrum analysis of impact-echo waveforms.” International Advances in Nondestructive Testing, No. 12, pp. 117-146.
    Cheng, C.C., and Sansalone, M. (1995a). “Determining the minimum crack width that can be detected using the impact-echo method Part 1: Experimental study.” Materials and Structures, Vol. 28, No. 2, pp. 74-82.
    Cheng, C.C., and Sansalone, M. (1995b). “Determining the minimum crack width that can be detected using the impact-echo method Part 2. Numerical fracture analyses.” Materials and Structures, Vol.28, No.3, pp. 125-132.
    Colla, C., and Lausch, R. (2003). “Influence of Source Frequency on Impact-Echo Data Quality for Testing Concrete Structures.” NDT & E International, Vol. 36, no. 4, pp. 203-213.
    Cook, R.D., Malkus, D.S., Plesha, M.E., and Witt, R.J. (2001). Concepts and Applications of Finite Element Analysis, John Wiley & Sons., Inc.
    Potts, D.M. and Zdravkovic, L. (1999). Finite Element Analysis in Geotechnical Engineering: Theory, Thomas Telford Publishing, London.
    Dassault Systèmes (2014). ABAQUS 6.14, ABAQUS/CAE User’s Guide, Providence, RI, USA.
    Daubechies, I. (1988). “Orthonormal bases of compactly supported wavelets.” Communications on Pure and Applied Mathematics, Vol. 41, No. 7, pp. 909-996.
    Daubechies, I. (1992). Ten Lectures on Wavelets, Society for industrial and applied mathematics.
    Fourier, J.B.J. (1807). “On the propagation of heat in solid bodies.” Memoir, Paris Institute.
    Gabor, D. (1946). “Theory of communication. Part 1: The analysis of information.” Journal of the Institution of Electrical Engineers-Part III: Radio and Communication Engineering, Vol. 93, No. 26, pp. 429-441.
    Goupillaud, P., Grossmann, A. and Morlet, J. (1984). “Cycle-octave and related transforms in seismic signal analysis.” Geoexploration, Vol. 23, No. 1, pp. 85-102.
    Haar, A. (1910). Zur Theorie der orthogonalen Functionensysteme. Inaugural. PhD Dissertation, Mathematische Annalen, Vol. 69 No. 3, pp. 331–371.
    Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H. H., Zheng, Q., Yen, N.C., Tung, C.C. and Liu, H.H. (1998). “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis.” In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, pp. 903-995.
    Hsiao, C., Cheng, C.C., Liou, T., and Juang, Y. (2008). “Detecting flaws in concrete blocks using the impact-echo method.” NDT & E International, Vol. 41, Vol. 2, pp. 98-107.
    Huang, Y.H., Ni, S.H., Lo, K.F., and Charng, J. J. (2010). “Assessment of identifiable defect size in a drilled shaft using sonic echo method: Numerical simulation.” Computers and Geotechnics, Vol.37, No.6, pp.757-768.
    Kim, D.S., Kim, H.W., and Kim, W.C. (2002). “Parametric Study on the Impact-Echo Method Using Mock-up Shafts.” NDT & E International, Vol. 35, No. 8, pp. 595-608.
    Lei Y., He Z., Zi Y. (2009). “Application of the EEMD method to rotor fault diagnosis of rotating machinery.” Mechanical Systems and Signal Processing, Vol. 23, No. 4, pp.1327-1338.
    Liao, S.T., Nondestructive Testing of Piles, PhD. Dissertation, Department of Civil Engineering, University of Texas, Austin, Texas (1994).
    Lin C.C., Liu P.L., Yeh P.L. (2009). “Application of empirical mode decomposition in the impact-echo test.” NDT & E International. Vol. 42, No.7, pp.589-598.
    Lin, Y., Sansalone, M., and Carino, N.J. (1990). “Finite element studies of the impact-echo response of plates containing thin layers and voids.” Journal of Nondestructive Evaluation, Vol. 9, No. 1, pp. 27-47.
    Lin, Y., and Sansalone, M. (1992). “Detecting flaws in concrete beams and columns using the impact-echo method.” Materials Journal, Vol. 89, no. 4, pp. 394-405.
    Lin, Y., and Su, W.C. (1996). “Use of stress waves for determining the depth of surface-opening cracks in concrete structures.” Materials Journal, Vol. 93, No.5, pp.494-505.
    Malhotra, V.M. (1976). “Testing Hardened Concrete:Nondestructive Methods (No. 9).” Iowa State Press.
    Mallat, S.G. (1989). “A theory for multiresolution signal decomposition: the wavelet representation.” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 11, No. 7, pp. 674-693.
    Meyerhof, G.G. (1956). “Penetration tests and bearing capacity of cohesionless soils.” Journal of the Soil Mechanics and Foundations Division, Vol. 82, No. 1, pp. 1-19.
    Misiti M, Misiti Y, Oppenheim G, Poggi J.M. (2015). Wavelet Toolbox: for Use with MATLAB, Mathworks.
    Meyer, Y., Ondettes (1986). Functions Splines et Analyses Graduées, Seminaire EDP, Ecole Polytechnique.
    Miklowitz, J. (2012). The Theory of Elastic Waves and Waveguides, Vol. 22. Elsevier.
    Ni, S.H., Lo, K.F., Lehmann, L., and Huang, Y.H. (2008). “Time-frequency analyses of pile-integrity testing using wavelet transform.”Computers and Geotechnics, Vol.35, No.4, pp. 600-607.
    Ni, S.H., Isenhower, W.M., and Huang, Y.H. (2012). “Continuous wavelet transform technique for low-strain integrity testing of deep drilled shafts.” Journal of GeoEngineering, Vol. 7, No.3, pp. 97-105.
    Ni, S.H., Yang, Y.Z., Tsai, P.H., and Chou, W.H. (2017). “Evaluation of pile defects using complex continuous wavelet transform analysis.” NDT & E International, Vol. 87, pp. 50-59.
    Ni, S.H., Li, J.L., Yang, Y.Z., and Yang, Z.T. (2017). “An improved approach to evaluating pile length using complex continuous wavelet transform analysis.” Insight-Non-Destructive Testing and Condition Monitoring, Vol. 59, No. 6, pp.318-324.
    Ovanesova A, Suarez L. (2004). “Applications of wavelet transforms to damage detection in frame structures.” Engineering structures, Vol.26, pp. 39-49.
    Paquet, J., and M. Briard (1976). Non-destructive Control of Concrete Piles-sonic Logging and Mechanical Impedance Method, ANN ITBTP.
    Park, H.C., and Kim, D.S. (2006). “Non-destructive pile integrity test using HWAW method.” Key Engineering Materials, Vol.321, pp. 363-366.
    Richart Jr, F.E., Hall Jr, J.R., and Woods, R.D. (1970). Vibrations of Soils and Foundations, Prentice-Hall, Inc.
    Rausche, F., Likins, G., and Hussein, M. (1994). “Formalized Procedure for Quality Assessment of Cast-in-Place Shafts Using Sonic Pulse Echo Methods.” Transportation Research Record, Vol. 1447, pp. 30-38.
    Sansalone, M. (1997). “Impact-echo: the complete story.” Structural Journal, Vol. 94, No. 6, pp. 777-786.
    Sansalone, M., Carino, N.J., and Hsu, N.N. (1987). “A finite element study of transient wave propagation in plates.” Journal of research of the National Bureau of Standards, Vol. 92, No. 4, pp. 267-278.
    Sansalone, M. and Carino, N.J. (1987a). “Transient impact response of thick circular plates.” Journal of Research of the National Bureau of Standards, Vol. 92, No. 6, pp. 355-367.
    Sansalone, M. and Carino, N.J. (1987b). “Transient impact response of plates containing flaws.” Journal of Research of the National Bureau of Standards, Vol. 92, No. 6, pp. 369-381.
    Sansalone, M.J. and Streett, W.B. (1997). Impact-echo: Nondestructive evaluation of concrete and masonry, Bullbrier Press.
    Schellingerhout, A.J.G. (1992). “Quantifying Pile Defects by Integrity Testing.” Proceedings of the Fourth International Conference on the Application of Stress Wave Theory to Piles, Baldema, Rotterdam, Brookfield, September, pp. 319-324.
    Seitz, J.M. (1992). “Pile Integrity by Low Strain Amplitude- a State-of-Art.” Proceedings of the Fourth International Conference on the Application of Stress-Wave Theory to Piles, Netherlands, pp. 627-637.
    Shiwei, M. A., Sasaki, T., Yoshihisa, E., Honda, T. (2003). “1. Time-Frequency Analysis of Ultrasonic Echoes and its Application to Nondestructive Evaluation of Thermal Damage of Steel.”, Research Reports of the National Institute of Industrial Safety, NIIS-RR-2002.
    Steinbach, J., and Vey, E. (1975). “Caisson Evaluation by Stress Wave Propagation Method.” Journal of Geotechnical Engineering Division, ASCE, Vol.101, pp. 361-387.
    Terzaghi, K. and Peck, R.B. (1948). Soil Mechanics in Engineering Practice, John Wiley & Sons.
    TNO Building and Construction Research (1997). Foundation Pile Diagnostic System: Sonic Integrity Testing, Netherland.
    Wang, Y.H. (2014). “Research Center for Adaptive Data Analysis [online]. Taiwan: National Central University.” Available from: http://rcada.ncu.edu.tw/research1.htm
    Wu, Z. and Huang, N.E. (2009). “Ensemble empirical mode decomposition: a noise-assisted data analysis method.” Advances in adaptive data analysis, Vol. 1, No.01, pp. 1-41.
    Wu, Z. (2014). “Detection and localization of power quality disturbances based on complex wavelet.” Journal of Electrical Engineering, Vol. 2, No. 2, pp. 9-17.
    Yeh, J.R., Shieh, J.S., and Huang, N.E. (2010). “Complementary ensemble empirical mode decomposition: A novel noise enhanced data analysis method.” Advances in Adaptive Data Analysis, Vol. 2, No. 2, pp. 135-156.
    Zhang J, Yan R, Gao R.X, Feng Z. (2010). “Performance enhancement of ensemble empirical mode decomposition.” Mechanical Systems and Signal Processing, Vol.24, No. 7, pp.2104-2123.
    Zhang, Y. and Xie, Z. (2012). “Ensemble empirical mode decomposition of impact-echo data for testing concrete structures.” NDT & E International, Vol. 51, pp. 74-84.  

    無法下載圖示 校內:2022-06-06公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE