| 研究生: |
黃冠程 Huang, Guan-Cheng |
|---|---|
| 論文名稱: |
以模擬最佳化求解自行車鏈條之CONWIP拉式系統設計 The Use of Simulation Optimization in Solving the CONWIP Pull System Design Problem from Bicycle Chain Manufacturing |
| 指導教授: |
楊大和
Yang, Taho |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 製造資訊與系統研究所 Institute of Manufacturing Information and Systems |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | CONWIP 、系統模擬 、精實生產 、拉式系統 、價值流圖 |
| 外文關鍵詞: | CONWIP, Discrete-event simulation, Lean production, Pull system, Value stream mapping |
| 相關次數: | 點閱:87 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣為自行車王國,自行車零件製造業為台灣重要的產業,面臨著少量多樣的顧客需求,如此一來零件製造業者該如何減少庫存、降低生產時的浪費並且準時達交顧客需求成為一個值得深入探討的問題。許多企業傾向導入精實生產來降低生產成本與增加製造彈性以提升企業競爭力。本研究將以自行車鏈條製造廠為例,將拉式系統應用於生產線上,找出符合實務的導入步驟,設計最佳化方案作為管理者實務上的發展目標。
首先,以價值流圖發現案例公司前置時間過長以及在製品堆積的問題,成為改善的契機,而拉式生產系統對於此兩大問題有著顯著的改善效益,故導入拉式系統;接下來利用離散事件模擬蒐集推式方案下的製程資訊,找找出瓶頸工程,結合限制理論、現場限制、生產線平衡等概念設計出五個改善方案,並利用模擬最佳化求得最佳切點與在製品配置,接著以敏感度分析討論顧客在不同需求情況下,生產系統的變化與因應;最後測試加工批量減半對整體績效指標的影響。
實驗結果與過去推式方案相比,案例公司目前實行的改善方案經過最佳化的結果有最佳的改善效益,在製品改善百分比為55.4%、前置時間改善42.8%;其餘四個方案亦有在製品有54.9%以上、前置時間有25.2%以上的改善,由此可知拉式系統的導入能大幅減少製程中在製品數量,並縮短前置時間,達到降低成本、縮短交期的成果,將來案例公司可以藉由持續改善朝本研究的最佳化方案為發展目標。
Bicycle part manufacturing is an important industry and now is facing to a problem of demand with multiple products and low volume. That is worth to discuss how to reduce stock and waste during process but also fill the order on time. There are many enterprises have been adapting lean method not only to reduce costs and wastes but also enhance product quality and flexibility of productions. This study is conducted to the case firm, a bicycle chain manufacturer, and use pull system to production line. Find the step of importing pull system into practice, and design five optimization schemes which can be the goal of manager.
First, use value stream mapping to find two problems, long lead time and many work in process, as the starting point of kaizen. Pull system has significant effect about this two problems, so this study will import pull system into real production line and use discrete-event simulation to collet productive information, then combine concept such as Theory of Constraints, constrains from work site and Line Balance to design improvement scheme and use Simulation Optimization to find the best cut point and WIP cap. Finally, we conduct a sensitivity analysis to discuss the different scheme’s system performance under the circumstances of customer’s variable demand and half process batch.
The result of optimization scheme which case firm executed has best performance, total WIP reduce 49.7% and average lead time reduce 61.3%. The other four schemes also reduce 49% total WIP and 48% average lead time. Thus we can see importing CONWIP pull system is not only able to reduce total WIP but also shorten average lead time. In the future, case firm can through continuous improvement to achieve optimization scheme’s result of this study.
Smalley, A,李兆華譯,2007,建構平準流,財團法人中衛發展中心,台北。
Manabon,2017,自行車鏈條的日常保養與使用小貼士,Available:http://t6tt.com/archives/383822(取得日期:2017.1.10)
全民健康基金會,2017,享受御風而行的暢快單車上路,健康起步,好健康,Available:http://www.twhealth.org.tw/index.php?option=com_zoo&task=item&item_id=635&Itemid=22(2017.3.28 取得)
財團法人自行車暨健康科技工業研究發展中心,2015,自行車產業概況,產業學院。
麥克.魯斯、約翰.舒克,趙克強譯,2006,學習觀察 : 增加價值、消除浪費的價值流圖,財團法人中衛發展中心,台北。
台灣區車輛工業同業公會,2016,台灣車輛工業產值,Available:
http://www.ttvma.org.tw/cht/industrial-survey.php (取得日期:2016.8.15)
Arena user’s manual, 2012, Rockwell Automation, Inc., Milwaukee, WI, U.S.A.
Banks, J., Carson, J., and Nelson B., 1996, Discrete-Event System Simulation, 2nd edition, Pearson Prentice Hall, New Jersey.
Baybars, I., 1986b. An efficient heuristic method for the simple assembly line balancing problem. International Journal of Production Research, 24, 149–166.
Glover, F., and Laguna, M., 1997, Tabu search, Boston, Kluwer Academic Publishers.
Glover, F., Kelly, J.P., and Laguna, M., 1996, New advances and application of combining simulation and optimization, Proceedings of the 28th Conference on Winter Simulation, Coronado, California, United States: IEEE Computer Society, 144-152.
Glover, F., Kelly, J.P., and Laguna, M., 1999, New advances for wedding optimization and simulation, Proceedings of the 31th Conference on Winter Simulation, Phoenix, Arizona, 255-260.
Goldratt, E. and Cox, F., 1992, The Goal, The North River Press, Second Edition, Great Barrington, MA.
Hopp, W. J., and Spearman, M. J., 2008, Factory Physics, 3rd edition, Waveland Press, Long Grove, Illinois.
Huang, C.-C., and Liu, S. H., 2005, A novel approach to learn control for Taiwan-funded enterprises in mainland China, International Journal of Production Research, 43, 2553-2575.
Kelton, W.D., Sadowski, R.P., and Sturrock, D.T., 2014, Simulation with Arena, 6th edition, McGraw Hill, New York.
Liker, J.K., 2004, The Toyota Way:14 Management Principles from The World's Greatest Manufacturer, McGrawHill, New York.
McDonald, T., Van Aken, E. M., and Rentes, A. F., 2002, Utilising simulation to enhance value stream mapping: a manufacturing case application, International Journal of Logistics Research and Applications, 5(2), 213-232.
Ohno, T., 1988, Toyota Production System: Beyond Large-Scale Production, Productivity Press, Portland.
Spearman, M. L., Woodruff, D. L., and Hopp, W. J., 1990. CONWIP: a pull alternative to kanban. The International Journal of Production Research, 28 (5), 879-894.
Voelkel, J. G., and Chapman, C., 2003, Value stream mapping: this tool puts you and your customer on the same page, Quality Progress, 36, 65-69.
Wang, T. K., Yang, T., Yang, C. Y., and Chan, F. T., 2015, Lean principles and simulation optimization for emergency department layout design, Industrial Management & Data Systems, 115(4), 678-699.
Womack, J.P., and Jones, D.T., 1996, Lean Thinking : Banish Waste and Create Wealth in Your Corporation, Simon and Schuster, New York.
Womack, J.P., Jones, D.T., Roos, D., 1990, The Machine That Changed the World, Harper Collins, New York.
Yang, T., Fu, H. P., and Yang, K. Y. 2007. An evolutionary-simulation approach for the optimization of multi-constant work-in-process strategy—a case study. International Journal of Production Economics, 107 (1), 104-114.
Yang, T., Hsieh, C.H., and Cheng, B.Y., 2011, Lean-pull strategy in a re-entrant manufacturing environment: A pilot study for TFT-LCD array manufacturing, International Journal of Production Research, 49(6), 1511-1529.
Yang, T., Hsieh, C.H., and Chou, P.H., 2005, Solving a multiresponse simulation problem using a dual-response system and scatter search method, Simulation Modelling Practice and Theory, 13(4), 356-369.
Yang, T., Kuo, Y., Chang, I., 2004, Tabu-search simulation optimization approach for flow-shop scheduling with multiple processors-a case study, International Journal of Production Research, 42(19), 4015-4030.
Yang, T., Kuo, Y., Su, C. T., and Hou, C. L., 2015, Lean production system design for fishing net manufacturing using lean principles and simulation optimization, Journal of Manufacturing Systems, 34, 66-73.
Yang, T., Lin, H.C., and Chen, M.L., 2006, Metamodeling approach in solving the machine parameters optimization problem using neural network and genetic algorithms: A case study, Robotics and Computer-Integrated Manufacturing, 22(4), 322-331