| 研究生: |
陳忠陽 Chen, Chung-Yang |
|---|---|
| 論文名稱: |
n通道汲極延伸型金氧半場效電晶體其熱載子造成元件退化之分析 Analysis of Hot-Carrier-Induced Device Degradation in n-type DEMOS Transistors |
| 指導教授: |
陳志方
Chen, Jone-Fang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 熱載子 、可靠度 、汲極延伸型金氧半場效電晶體 |
| 外文關鍵詞: | reliability, hot-carrier, DEMOS |
| 相關次數: | 點閱:73 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文主要是對n通道汲極延伸型金氧半場效電晶體(DEMOSFET)之元件特性,做熱載子可靠度的研究,分析元件參數的退化情形,更進一步探討造成元件退化的機制。
首先,會對高壓元件的應用做基本的描述與介紹,然後介紹實驗中各個參數的量測方法與步驟,並會敘述進行熱載子stress實驗的方法及其用意。
我們對元件進行定電壓熱載子stress實驗之後,觀察各個參數的退化情況,其中臨限電壓(Threshold voltage)這個參數的退化,有異常增加的現象,藉由charge pumping的實驗與分析、以及TCAD的模擬結果,我們可以對此異常退化的現象做詳細的討論與解釋。
再來,我們改變元件通道的尺寸,使其變小,再進行熱載子stress的實驗與分析,探討改變通道長度對元件可靠度造成的影響,並使用charge pumping量測與TCAD模擬的方法加以佐証,對此結構的元件,完成可靠度的實驗與分析。
In this thesis, device characteristics of n-type DEMOS transistors are investigated on hot carrier reliability. The degradation phenomenon of device parameters are analyzed, furthermore, the mechanism which causes device degraded are discussed.
There will be some basic introductions of HV devices and its application. It also shows all the parameters extracted from my experiments and measurement methodology. Then, the hot carrier stress methodology will be introduced.
After hot carrier stress experiment, the degradation phenomena of each parameter are observed. The degradation of threshold voltage has anomalous increase after stress. By means of charge pumping analysis and TCAD simulation, the phenomenon of anomalous degradation can be discussed and explained in detail.
The dimension of channel length is reduced, and then the experiment of hot carrier stress and analysis of degradation phenomena are performed. The effects of channel length on device reliability are investigated. The experiment results can be evidenced by charge pumping analysis and TCAD simulation. The experiment and analysis on reliability with the device used in this study will be accomplished.
[1]C. Y. Tsai, et al., “16–60 V rated LDMOS show advanced performance in an 0.72 μm evolution BiCMOS power technology,” in IEDM Tech. Dig., pp. 367-370 (1997).
[2]V. Parthasarathy, et al., “A 33 V, 0.25 mΩ*cm2 n-channel LDMOS in a 0.65 μm smart-power technology for 20-30 V operation,” in Proc. Int. Symp. Power Semiconductor Dev., pp. 61-64 (1998).
[3]J. A. Van der Pol, et al., “A-BCD: An economic 100 V RESURF silicon-on-insulator BCD technology for consumer and automotive applications,” in Proc. Int. Symp. Power Semiconductor Dev., pp. 327-330 (2000).
[4]T. Terashima, et al., “Multi-voltage device integration technique for 0.5μm BiCMOS and DMOS process,” in Proc. Int. Symp. Power Semiconductor Dev., pp. 331-334 (2000).
[5]Y. Kawagushi, et al., “0.6 μm BiCMOS-based 15 and 25 V LDMOS for analog applications,” in Proc. Int. Symp. Power Semiconductor Dev., pp. 169-172 (2001).
[6]P. Moens, et al., “I3T80: A 0.35 μm based system-on-chip technology for 42 V battery automotive applications,” in Proc. Int. Symp. Power Semiconductor Dev., pp. 225-228 (2002).
[7]Tahui Wang, Chimoon Huang, P. C. Chou, Steve S.-S. Chung, Tse-En Chang, “Effects of Hot Carrier Induced Interface State Generation in Submicron LDD MOSFET’s,” IEEE Tran. Elect. Dev., Vol. 41, No. 9 (1994).
[8]Y. Rey-Tauriac, J. Badoc, B. Reynard, R. A. Bianchi, D. Lachenal, A. Bravaix, “Hot-carrier reliability of 20V MOS transistors in 0.13 μm CMOS technology,” Microelectronics & Reliability, vol. 45, pp. 1349-1354 (2005).
[9]Philip L. Hower, “Safe Operating Area-a New Frontier in LDMOS Design, ” ISPSD, pp. 1-8 (2002).
[10]Zhilin Sun, Weifeng Sun, Longxing Shi, “A review of safe operation area,” Microelectronics Journal, pp. 1-7 (2005).
[11]Y. Nishioka, Y. Ohji, and T. Ma, “Gate-oxide breakdown accelerated by large drain current in n-channel MOSFET’s,” IEEE Elect. Dev. Lett., vol. 12, pp. 134-136 (1991).
[12]Kamakura, H. Utsunomiya, T. Tomita, K. Umeda, and K. Taniguchi, “Investigations of hot-carrier-induced breakdown of thin oxides,” IEDM Tech. Dig., Dec., pp. 81-84 (1997).
[13]A. W. Ludikhuize, M. Slotboom, A. Nezar, N. Nowlin, and R. Brock, “Analysis of hot-carrier-induced degradation and snapback in submicron 50V lateral MOS transistors,” ISPSD, pp. 53, 1997.
[14]M. S. Shekar, R. K. Williams, M. Cornell, M.-Y. Luo, and M. Darwish, “Hot electron degradation and unclamped inductive switching in submicron 60-V lateral DMOS,” IRPS, pp. 383, 1998.
[15]C. Y. Chang and S. M. Sze, “ULSI Technology,” (1996).
[16]Dieter K. Schroder, “Semiconductor Material and Device Characterization,” second edition.
[17]C. C. Cheng, K. C. Tu, and Tahui Wang, “Investigation of Hot Carrier Degradation Modes in LDMOS by Using A Novel Three-region Charge Pumping Technique,” IEEE IRPS, pp. 334-337 (2006).
[18]C. C. Cheng, J. F. Lin, T. Wang, T. H. Hsieh, J. T. Tzeng, Y. C. Jong, R. S. Liou, S. C. Pan, and S. L. Hsu, “Physics and characterization of various hot-carrier degradation modes in LDMOS by using a novel three-region charge pumping technique,” IEEE TDMR, vol. 6, NO. 3, pp. 358-362 (2006).
[19]S.M. Sze, “Physics of Semiconductor Device,” Wiley (1981)
[20]Ben G. Streetman, Sanjay Banerjee, “Solid state electronic device,” 5thed, Prentice Hall (2000)
[21]Yuan Taur, Tak h. Ning, ”Fundamentals of modern VLSI devices,” Cambridge (1998)
[22]A.W. Ludikhuize, “Kirk effect limitations in high voltage IC’s,” Proc. Int. Symp. Power Semiconductor Dev., pp.249 (1994)
[23]國立成功大學論文 “Development and Hot-Carrier Reliability Study of Integrated High-Voltage MOSFET Transistors,” Kuo-Ming Wu.