| 研究生: |
林培雯 Lin, Pei-Wen |
|---|---|
| 論文名稱: |
奈米裂縫微影術製作半導體奈米線元件之研究 Fabrication of Semiconductor Nanowire Devices using Nano-Crack Lithography |
| 指導教授: |
張允崇
Chang, Yun-Chorng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 奈米裂縫微影術 、奈米線 、奈米線元件 |
| 外文關鍵詞: | Nano-Crack Lithography, nanowire, nanowire devices |
| 相關次數: | 點閱:72 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文中,利用奈米裂縫微影術製作一維奈米線元件已被論證。奈米裂縫微影術是藉由Bow-tie光阻浸泡至液態氮而受熱應力的作用產生裂縫的一種自組裝置方法。所製作奈米線可預期沿著Bow-tie腰身的位置,由於知道奈米線的位置,這使得隨後電極的連接變得非常容易。製作出的金屬奈米線有15μm長、次微米等級的寬度。
利用奈米裂縫微影術製做出的金屬奈米線可當作蝕刻阻擋層來製作矽奈米線場效應電晶體(SiNW FETs)、AlGaN/GaN高電子遷移率電晶體(HEMTs)和InGaN奈米線發光二極體(LEDs)。在這些製程中,有幾種關鍵的製程,例如矽化鎳和旋轉塗佈摻雜製程都包含了降低電極區的電阻率。製作出的矽奈米線場效應電晶體當基板作為背閘極時已表現出三端的電特性。而製作的AlGaN/GaN高電子遷移率電晶體也表現出良好的結構品質,在不久的將來,將進行電性測試。此外,InGaN奈米線發光二極體也可以被製作,藉由SEM的圖像判定InGaN奈米線發光二極體也表現出良好的結構品質。然而,難以製做在奈米線位置的p-ype電極連接限制了我們測量LED元件的電特性。
總之,奈米裂縫微影術發展製作出一維矽奈米線場效應電晶體(SiNW FETs)、AlGaN/GaN高電子遷移率電晶體(HEMTs)和InGaN奈米線發光二極體(LEDs)。製作出的奈米線元件皆表現出良好的結構品質,我們在製程中獲得合理且可重複的電特性。我們相信在未來這些元件有適當的電特性可應用在奈米光電或生物電性上。
In this dissertation, one-dimensional nanowire fabrication using Nano-crack lithography has been demonstrated. Nano-crack lithography is a self-assembly method which utilizes the thermal crack induced by immersing the bowtie-photoresist patterns into liquid nitrogen. The fabricated nanowire will be at a pre-determined location along the neck of the bowtie, which makes the subsequent electric connections very easy due to the known nanowire’s location. The fabricated metal nanowires are 15 microns long and exhibit sub-micron linewidth.
The metal nanowires fabricate d by Nano-Crack Lithography are used as etching hard mask to fabricate Silicon nanowire field-effect transistors (SiNW FETs), AlGaN/GaN high electron mobility transistors (HEMTs) , and InGaN nanowire light emitting diodes (LEDs). In the fabrication procedures, several key processes, such as NiSi and spin-on-dopant are also included to reduce the resistivity of the conducting electrodes. The fabricated SiNW FETs have demonstrated three-terminal electric characteristics when using the substrate as the back gate. The fabricated AlGaN/GaN HEMTs also demonstrate good structural qualities and will be electrically test in the near future. In addition, InGaN nanowire LEDs have also be fabricated, which also exhibit good structural quality judging by the SEM images. However, the difficult to fabricate the p-contact on the nanowire have limited our ability to measure the electric properties of the LED device.
In summary, Nano-Crack Lithography is developed to fabricate one-dimensional SiNW FETs, AlGaN/GaN nanowire HEMTs and InGaN nanowire LEDs. The fabricate nanowire devices all demonstrates good structural properties. We are in the process to obtain reasonable and repeatable electric characteristics. We believe these devices will be ready for electric measurement and suitable for future applications either in the fields of Nanophotonics or bionanoelectronics.
[1] M. A. F. van den B. O. Vazquez-Mena,* G. Villanueva, V. Savu, K. Sidler and and J. Brugger*, “Metallic Nanowires by Full Wafer Stencil Lithography.” 2008.
[2] C.-Y. H. b Ai-Huei Chiou a, Tse-Chang Chien a, Ching-Kuei Su a, Jheng-Fong Lin a, “The effect of differently sized Ag catalysts on the fabrication of a silicon nanowire array using Ag-assisted electroless etching.” 2013.
[3] ad F. S. and J. T. L. T. Huijuan Zhang, abc Chee-Leong Wong, b Yufeng Hao, b Rui Wang, b Xiaogang Liu, “Self-aligned nanolithography by selective polymer dissolution.” 2010.
[4] S. E. Seid Jebril, Mady Elbahri, Getachew Titazu, Kittitat Subannajui, O. A. Florentina Niebelschu¨ tz, Claus-Christian Ro¨hlig, Volker Cimalla, and and R. A. Bernd Schmidt, Debdulal Kabiraj, Devesh Avasti, “Integration of thin-film-fracture-based nanowires into microchip fabrication.,” Small Weinheim an der Bergstrasse Germany, vol. 4, no. 12, pp. 2214–2221, Dec. 2008.
[5] Kuan-I Chena, b, 1, Bor-Ran Li a, b, 1, Yit-Tsong Chena, “Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation.” 2011.
[6] S. O. Hiroshi Iwaia ,*, Tatsuya Ohgurob, “NiSi salicide technology for scaled CMOS.” 2002.
[7] J. K. E. a M. Schmidt a,*, T. Mollenhauer a, H.D.B. Gottlob a, T. Wahlbrink a and H. K. a L. Ottaviano b, c, S. Cristoloveanu c, M.C. Lemme a, “Nickel-silicide process for ultra-thin-body SOI-MOSFETs.” 2005.
[8] C. C. J. C. Lavoie*, F.M. d’Heurle, C. Detavernier, “Towards implementation of a nickel silicide process for CMOS technologies.” 2003.
[9] R. A. S. H. Yeong, M. P. Srinivasan, Benjamin Colombeau, Lap Chan, “Defect engineering by surface chemical state in boron-doped preamorphized silicon.” 2007.
[10] Y.-H. Lo Yuchun Zhou,*,† Yu-hsin Liu,‡ James Cheng, “Bias Dependence of Sub-Bandgap Light Detection for Core−Shell Silicon Nanowires.” 2012.
[11] C. M. L. Brian P. Timko, Tzahi Cohen-Karni, Quan Qing, Bozhi Tian, “Design and Implementation of Functional Nanoelectronic Interfaces With Biomolecules, Cells, and Tissue Using Nanowire Device Arrays,” IEEE Transactions on Nanotechnology, vol. 9, no. 3, pp. 269–280, 2010.
[12] Y. Cui, Q. Wei, H. Park, and C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species.,” Science, vol. 293, no. 5533, pp. 1289–92, Aug. 2001.
[13] F. Patolsky, G. Zheng, and C. M. Lieber, “Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species.,” Nature Protocols, vol. 1, no. 4, pp. 1711–1724, Jan. 2006.
[14] X. Liang and S. Y. Chou, “Nanogap detector inside nanofluidic channel for fast real-time label-free DNA analysis.,” Nano Letters, vol. 8, no. 5, pp. 1472–1476, 2008.
[15] M. C. Lin, C. J. Chu, L. C. Tsai, H. Y. Lin, C. S. Wu, Y. P. Wu, Y. N. Wu, D. B. Shieh, Y. W. Su, and C. D. Chen, “Control and detection of organosilane polarization on nanowire field-effect transistors,” Nano Letters, vol. 7, no. 12, pp. 3656–3661, 2007.
[16] Z. H. H. L. Guo-Jun Zhang, Min Joon Huang, “Highly sensitive and reversible silicon nanowire biosensor to study nuclear hormone receptor protein and response element DNA interactions.” 2010.
[17] S.-P. Lin, C.-Y. Pan, K.-C. Tseng, M.-C. Lin, C.-D. Chen, C.-C. Tsai, S.-H. Yu, Y.-C. Sun, T.-W. Lin, and Y.-T. Chen, “A reversible surface functionalized nanowire transistor to study protein-protein interactions,” Nano Today, vol. 4, no. 3, pp. 235–243, Jun. 2009.
[18] C.-H. C. Hou-Yu Chen1, Chia-Yi Lin2, Min-Cheng Chen2, Chien-Chao Huang2, “Fabrication of High-Sensitivity Polycrystalline Silicon Nanowire Field-Effect Transistor pH Sensor Using Conventional Complementary Metal–Oxide–Semiconductor Technology.” 2011.
[19] T.-Y. L. 2 and M.-C. L. 2 Shu-Ping Lin 1,*, Tien-Yin Chi 1, “Investigation into the Effect of Varied Functional Biointerfaces on Silicon Nanowire MOSFETs.” 2012.
[20] J. Hahm and C. M. Lieber, “Direct Ultrasensitive Electrical Detection of DNA and DNA Sequence Variations Using Nanowire Nanosensors,” Nano Letters, vol. 4, no. 1, pp. 51–54, 2004.
[21] F. R. B. S. Kang, H. T. Wang, T. P. Lele, Y. Tseng, “Prostate specific antigen detection using AlGaN/GaN high electron mobility transistors.” 2007.
[22] Y. S. Resham Thapa, Siddharth Alur, Kyusang Kim, Fei Tong, “Biofunctionalized AlGaN/GaN high electron mobility transistor for DNA hybridization detection.” 2012.
[23] J. W. J. H. T. Wang, B. S. Kang, F. Ren, S. J. Pearton, “Electrical detection of kidney injury molecule-1 with AlGaN/GaN high electron mobility transistors.” 2007.
[24] F. C. Jiming Bao, Mariano A. Zimmler, “Broadband ZnO Single-Nanowire Light-Emitting Diode.” 2006.
[25] J.-H. R. Sheng Xu , Chen Xu , Ying Liu , Youfan Hu , Rusen Yang , Qing Yang and R. D. Hee Jin Kim , Zachary Lochner , Suk Choi, “Ordered Nanowire Array Blue/Near-UV Light Emitting Diodes.” 2010.
[26] 施敏 原著,黃調元 譯,半導體元件物理與製作技術(第二版),交大出版社,2002