| 研究生: |
羅智豪 Lo, Chi-Hou |
|---|---|
| 論文名稱: |
焚化底渣篩洗細料產製蒸壓氣泡混凝土之研究 Utilization of wet screening incineration fine bottom ash as raw materials in autoclaved aerated concrete production |
| 指導教授: |
張祖恩
Chang, Juu-En |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 136 |
| 中文關鍵詞: | 碳酸鈣 、氣泡混凝土 、托伯莫萊土 |
| 外文關鍵詞: | CaCO3, autoclaved aerated concrete, tobermorite |
| 相關次數: | 點閱:75 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
焚化底渣(municipal solid waste incinerator (MSWI) bottom ash)經篩分水洗後產出之篩洗細料可分為細砂料(bottom ash-fine aggregate)及細集料(bottom ash-fine),因粒徑較細且含有較多碳酸鈣,易對水泥水化速率造成影響等問題,其資源化通路受限。焚化底渣篩洗細料含有Ca、Si等元素,應具有作為AAC(autoclaved aerated concrete,AAC)替代原料之潛力,然而目前少有研究探討碳酸鈣在高壓蒸氣養護條件下對AAC之影響,因此若能釐清碳酸鈣之作用並應用在篩洗細料產製AAC,不僅能有助資源循環,同時能增加焚化底渣再利用機會。
本研究首先利用試藥級碳酸鈣(CaCO3)於製備AAC原料中,並將其以不同角色取代配料中總鈣矽(視為骨材)及反應鈣比例(視為反應材),探討碳酸鈣在不同之調配比例中對AAC物理特性之影響,再將焚化底渣篩洗細料以調配方式進行添加比例及取代比例兩種應用於AAC之製作,藉由調整拌合水量,歸納最適製作AAC條件,並透過批次溶出試驗瞭解不同調配比例之AAC溶出特性。
研究結果顯示,碳酸鈣視為骨材取代配料中總鈣矽對AAC之抗壓強度及密度之影響最為顯著,當碳酸鈣取代總鈣矽比例由0 wt.% (Ca/Si = 0.35)增至16 wt.%(Ca/Si = 0.63)時,AAC抗壓強度明顯由11.35 MPa下降至6.70 MPa,且密度由772.80 kg/m3下降至658.03 kg/m3。而碳酸鈣視為反應材取代反應鈣比例由0 wt.% (Ca/Si = 0.35)增至16 wt.%(Ca/Si= 0.45)時,AAC製品強度明顯下降至7.50 MPa,且密度下降至752.95 kg/m3。不論視為骨材或反應材,AAC抗壓強度及密度皆隨碳酸鈣調配比例增加下降,但視為骨材取代總鈣矽之AAC抗壓強度有較明顯下降,係因AAC中缺乏可反應之鈣矽元素所致。
此外,焚化底渣篩洗細料以水固比0.65 L/kg製作之AAC具有較佳抗壓強度及密度,其中細集料取代比例可提高至50 wt.%,細砂料則可提高至30 wt.%,並皆可符合AAC標準規範。另由不同粒徑之細砂料取代反應鈣矽比例中發現,粒徑對AAC中tobermorite水化物無明顯之影響,但有適量添加(< 10 wt.%)時,較大粒徑細砂料製作之AAC能有較佳之抗壓強度。
另於溶出試驗中,無論是去離子水、酸雨或醋酸環境下,重金屬溶出皆低於偵測極限,可符合「有害事業廢棄物認定標準」與綠建材溶出規範,顯示焚化底渣篩洗細料產製AAC應無重金屬溶出疑慮,係為環境友善之製品。
Bottom ash-fine aggregate (BA-FA) and bottom ash-fine (BA-F) are products during Wet screening incineration bottom ash fine (BA-Fs), require more methods to reuse and improve the dealing problem. It has much more CaCO3 in BA-F and to be considered as the influence of concrete hydration and the rate of hydration and reveal by chemical analysis observing. BA-Fs is rich in calcium and silica elements, so that have the potential to be used in the production of autoclaved aerated concrete (AAC) as an alternative raw material.
Use CaCO3 and BA-F replace the AAC ratio of calcium and silica to be the aggregate, and the reactivity as CaO. The concentration of CaCO3 of aggregate from 0% increase to 16wt. %, the compression strength changes from 11.5MPa to 6.70MPa, when CaCO3 replaced CaO, the compression strength became 7.50MPa. Increase the ratio of the replacement as BA-F to 50wt. %, BA-FA to 30wt. %, it can be in accordance with AAC standard, and in the dissolution tests are all in accordance with the hazardous industrial waste Criteria. It has the negative effects to the AAC productions which contain CaCO3, and to replace CaO can increase the ratio and the characteristic of the products.
Bensted, J., & Barnes. P., (2002). Structure and Performance of Cements, second ed., Spon Press, London, UK.
Cheeseman, C.R., Makinde, A., & Bethanis, S. (2005). Properties of lightweight aggregate produced by rapid sintering of incinerator bottom ash. Resources, Conservation and Recycling, 43, 147–162.
Chimenos, J. M., Segarra, M., Fernandez, M.A., & Espiell, F. (1999). Characterization of the bottom ash in municipal solid waste incinerator. Journal of Hazardous Materials, 64, 211–222.
Cioffia, R., Colangelo, F., Montagnaro, F., & Santoro, L., (2011). Manufacture of artificial aggregate using MSWI bottom ash. Waste Management, 31, 281–288.
Collepardi, M. (1976). Low pressure steam curing of compacted lime-pozzolana mixtures. Cement and Concrete Research, 6(4), 497-506.
Crannell, B.S., Eighmy, T.T., Krzanowski, J.E., Jr, J.D.E, Shaw, L.E., & Francis, C.S. (2000). Heavy metal stabilization in municipal solid waste combustion bottom ash using soluble phosphate. Waste Management, 20, 135-148.
Cyr, M., Lawrence, P., & Ringot, E.(2006). Efficiency of mineral admixtures in mortars: Quantification of the physical and chemical effects of fine admixtures in relation with compressive strength. Cement and Concrete Research, 36, 264-277.
Etoh, J., Kawagoe, T., Shimaoka, T., & Watanabe, K. (2009). Hydrothermal treatment of MSWI bottom ash forming acid-resistant material. Waste Management, 29, 1048–1057.
Holt, E., & Raivio, P. (2005). Use of gasification residues in autoclaved aerated concrete. Cement and Concrete Research, 35(4), 796-802.
Hu, S.H. (2005). Stabilization of heavy metals in municipal solid waste incineration ash using mixed ferrous/ferric sulfate solution. Journal of Hazardous Materials, B(123), 158–164.
Huang, X., Jiang, D., & Tan, S. (2003). Novel hydrothermal synthesis of tobermorite fibers using Ca(II)-EDTA complexprecursor. Journal of the European Ceramic Society, 23 , 123–126
Huang, X.Y., Ni, W., Cui, W.H.,Wang, Z.J., & Zhu, L.P. (2012). Preparation of autoclaved aerated concrete using copper tailings and blast furnace slag. Construction and Building Materials, 27, 1-5.
Isu, N., Ishida, H., & Mitsuda, T. (1995). Influence of quartz particle size on the chemical and mechanical properties of autoclaved aerated concrete (I) tobermorite formation. Cement and Concrete Research, 25(2), 243-248.
Isu, N., Teramura, S., Ishida, H., & Mitsuda, T. (1995). Influence of quartz particle size on the chemical and mechanical properties of autoclaved aerated concrete (II) fracture toughness, strength and micropore. Cement and Concrete Research, 25(2), 249-254.
Jing, Z., Jin, F., Hashida, T., Yamasaki, N., & Ishida, E.H. (2008). Influence of additions of coal fly ash and quartz on hydrothermal solidification of blast furnace slag. Cement and Concrete Research, 38, 976-982.
Jing, Z., Matsuoka, N., Jin, F., Hashida, T., & Yamasaki, N. (2007). Municipal incineration bottom ash treatment using hydrothermal solidification. Waste Management, 27(2), 287-293.
Karakurt, C., Kurama, H., & Topçu, I.B. (2010). Utilization of natural zeolite in aerated concrete production. Cement & Concrete Composites, 32, 1-8.
Kim, Y.T., & Do, T.H. (2012). Effect of bottom ash particle size on strength development in composite geomaterial. Engineering Geology, 139-140, 85-91.
Laukaitis, A., & Fiks, B. (2006). Acoustical properties of aeratedautoclaved concrete. Applied Acoustics, 67, 284-296.
Lin, C.F., Wu, C.H., & Ho, H.M. (2006). Recovery of municipal waste incineration bottom ash and water treatment sludge to water permeable pavement materials. Waste Management, 26, 970–978.
Lin, K.L., & Lin, D.F. (2006). Hydration characteristics of municipal solid waste incinerator bottom ash slag as a pozzolanic material for use in cement. Cement & Concrete Composites, 28, 817–823.
Lothenbach, B., Saout, L.G., Gallucci, E., & Scrivener, K., (2008). Influence of limestone on the hydration of Portland cements. Cement and Concrete Research, 38, 848-860.
Meima, J. A., Comans, R. N. J. (1997). Geochemical modelling of weathering eactions in municipal solid waste incinerator bottom ash. Environ. Sci. Technol, 31, 1269-1276.
Ménétrier, D., Jawed, I., Sun, S.T., & Skalny, J. (1980). Surface studies of hydrated β-C2S., Cement and Concrete Research, 10(3), 425–432
Mindess, S., & Young, J.F. (1981). Concrete.
Mitsuda, T., Sasaki, K., & Ishida, H. (1992). Phase evolution during autoclaving process of aerated concrete. Journal of the American Ceramic Society, 75(7), 1858-1863.
Pera, J., Coutaz, L., Ambroise, J., & Chababbet, M. (1997). Use of incinerator bottom ash in concrete. Cement and Research, 27(1), 1-5.
Pera, J., Coutaz, L., Ambroise, J., & Chababbet, M. (1997). Use of incinerator bottom ash in concrete. Cement and Concrete Research, 27(1), 1-5.
Radhi, H. (2011). Viability of autoclaved aerated concrete walls for the residential sector in the United Arab Emirates. Energy and Buildings, 43, 2086-2092.
Ramezanianpour, A.A., Ghiasvand, E., Nickseresht, I., Mahdikhani, M., & Moodi, F., (2009). Influence of various amounts of limestone powder on performance of Portland limestone cement concretes. Cement and Concrete Composites, 31, 715-720.
Saffarzadeh, A., Shimaoka, T., Wei, Y., Gardner, K.H., & Musselman, C.N. (2010). Impacts of natural weathering on the transformation/neoformation processesin landfilled MSWI bottom ash: A geoenvironmental perspective. Waste Management, 31, 2440-2454.
Santos, R.M., Mertens, G., Salman, S., Cizer, Ö., & Gerven, T.V. (2013). Comparative study of ageing, heat treatment and accelerated carbonation for stabilization of municipal solid waste incineration bottom ash in view of reducing regulated heavy metal/metalloid leaching. Journal of Environmental Management, 128, 807-821.
Smith, M. R. & Collis, L. (1993). Aggregates: Sand, Gravel and Crushed Rock Aggregates for Construction Purposes. London: Geological Society.
Soroka, I., & Stern, N. (1976). Calcareous fillers and the compressive strength of portland cement. Cement and Concrete Research, 6(3), 367-376.
Steketee, J.J., Duzijn, R.F., & Born, J.G.P. (1997). Quality improvement of MSWI bottom ash by enhanced aging, washing and combination processes. Studies in Environmental Science, 71, 13-23.
Stotz, G.P. (1997). Municipal Solid Waste Incineration (MSWI) Bottom Ashes as Granular Base Material in Road Construction. Waste Materials in Construction: Putting Theory into Practice, Germany.
Taylor, H. F. W. (1997). Cement Chemistry, second ed., Thomas Telford, London, UK.
Wiles, C.C., 1996. Municipal solid waste combustion ash: state of the knowledge. J. Hazardous Mater, 47, 325–344.
Wongkeo, W. & Chaipanich, A. (2010). Compressive strength, microstructure and thermal analysis of autoclaved and air cured structural lightweight concrete made with coal bottom ash and silica fume. Materials Science and Engineering A, 527(16-17), 3676-3684.
Wongkeo, W., Thongsanitgarn, P., Pimraks, L., & Chaipanich, A. (2012). Compressive strength, flexural strength and thermal conductivity of autoclaved concrete block made using bottom ash as cement replacement materials. Materials and Design, 35, 434-439.
Xiao, Y., Oorsprong, M., Yang, Y., & Voncken, J.H.L. (2008). Vitrification of bottom ash from a municipal solid waste incinerator. Waste Management, 28, 1020-1026.
Yazıcı, H., Yigiter, H., Karabulut, A.S., & Baradan, B. (2008). Utilization of fly ash and ground granulated blast furnace slag as an alternative silica source in reactive powder concrete. Fuel, 87, 2401–2407.
Zajac, M., Rossberg, B., Saout, G.L., & Lothenbachb, B. (2014). Influence of limestone and anhydrite on the hydration of Portland cements. Cement and Concrete Research, 46, 99-108.
王弟文,下水污泥焚化灰製造發泡輕質混凝土之研究,國立中央大學環境工程研究所,碩士論文,2001。
永續公共工程入口網,http://eem.pcc.gov.tw/。
行政院環境保護署網站, http://www.epa.gov.tw。
李祐承,焚化飛灰與脫硫石膏產製高壓蒸氣養護氣泡混凝土之研究,國立成功大學環境工程學系,碩士論文,2013。
陳韋伶,不同焚化爐底碴物化性質比較分析,國立中央大學土木工程研究所,碩士論文,2004。
林俊達,煉鋼爐渣蒸壓產製氣泡混凝土之特性研究,國立成功大學環境工程學系,碩士論文,2011。
蔣子平,應用於道路工程之焚化底灰貯存時間最佳化探討,鋪面工程學術研討會論文集,頁159-168,2003。
高健章,輕質混凝土在國內發展之研究,內政部建築研究所籌備處專題研究計畫成果報告,1993。
張旭彰,「都市焚化灰渣熔融處理操作特性之研究」,國立中央大學環境工程研究所,碩士論文,1992。
張明輝,邱三,刁秀華,大型都市垃圾焚化廠混燒處理工業廢棄物現況分析,產業環保工程實務研討會,2002。
張祖恩,柯明賢,施百鴻,焚化灰渣資源化技術,廢棄物資源再生技術研究成果發表會論文集,2000。
蔡樹鴻,台灣地區都市垃圾焚化威渣物化組成與溶出特性探討,一般廢棄物焚化資源化技術與實務研討會,台北市,頁227-246,1996。
曾茂印,二次粒料應用於熱拌瀝青混凝土之評估,國立成功大學土木工程學系,2010。
劉志堅,水洗垃圾焚化底渣應用於高壓混凝土磚的可行性評估,國立高雄應用科技大學土木工程與防災科技研究所,碩士論文,2011。
陳詣欣,粒徑對煉鋼爐渣產製蒸壓氣泡混凝土特性之影響,國立成功大學環境工程學系,碩士論文,2012。
黃兆龍,混凝土性質與行為,第三版,詹氏書局,台北市,2002。
陳景文,垃圾焚化爐底碴應用於道路基底層之研究,國立成功大學土木工程研究所,碩士論文,2003
汪心怡,垃圾焚化廠焚化灰渣管理及查核專案工作計畫,行政院環境保護署,2007。
鄭大偉 ,焚化灰渣水淬熔渣製成重金屬吸附劑之研究,國立台北科技大學資源工程研究所,研究計畫研究報告,2010。
鄭欽仁,下水污泥灰發泡混凝土之輕質化與隔熱特性研究,國立中央大學環境工程研究所,碩士論文,2002。
顏聰,輕質骨材混凝土之力學性質,輕質骨材混凝土會刊,創刊號,第27~41頁,2004。
龔人俠,水泥化學概論,台灣水泥工業同業公會,1977。