| 研究生: |
周昱廷 Chou, Yu-Ting |
|---|---|
| 論文名稱: |
硝酸羥胺基推進劑之電解解離特性 Electrolytic Decomposition Characteristics of Hydroxylammonium Nitrate Based Propellant |
| 指導教授: |
吳明勳
Wu, Ming-Hsun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 178 |
| 中文關鍵詞: | 硝酸羥胺 、離子液體 、電解解離 、綠色推進劑 |
| 外文關鍵詞: | hydroxylamine nitrate , ionic liquid, electrolytic decomposition, green propellant |
| 相關次數: | 點閱:39 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
HAN (硝酸羥胺:NH3OHNO3)作為一種離子液體,其解離反應可以透過電解方式啟動,但其確實之機制仍不清楚。甚至有部分HAN基推進劑電解點火研究認為HAN的解離是由於電解水所伴隨之焦耳效應,導致溫度上升而誘發的,本質上仍為熱解離。因此本研究將對80 wt.% HAN水溶液於高壓下進行電解,探討電解時間內電解解離現象,釐清其解離機制究竟是透過電化學路徑還是焦耳效應所引發。另外HAN為高壓力依賴性之離子液體,容易受到壓力影響而影響燃燒特性,對於未來如要發展電解引燃推進器,勢必需對其高壓下HAN水溶液電解解離進行研究。
根據實驗結果表明電解解離確實為電化學反應,還伴隨著電解解離產物硝酸引發自催化反應;從電解80 wt.% HAN水溶液餘液分析中表明電解產物為硝酸,這進一步支持了前述之論點,硝酸將使HAN進行自催化解離,解離反應所產生之熱能將推動其自持反應。在高壓電解解離的過程中,電荷傳輸機制為Grotthuss機制。在本體溶液中佈滿密集的氫鍵網絡,質子從水分子一端藉由氫鍵網絡快速位移到遙遠一方,這種電荷傳輸機制是壓力依賴性。時序氣相產物分析中,表明解離氣體擁有H2O、HNO3以及氮氧化物NO、NO2、N2O;尾氣分析中,電解與熱解之氮氧化物比例以及不同壓力下都有所差異,再次表明電解解離確實為電化學反應。電解電壓則是決定反應是否發生之因子,電場強度則是會加速反應速率。濃度影響離子密度和液體黏度,這影響著電解反應速率。電解SHP163會有兩階段反應,並不適合作為電解引燃之推進劑。上述結果釐清電解HAN水溶液主要為電化學反應而不是熱解反應,以及壓力、電壓、成分對電解解離之影響,這些結果對於未來應用HAN基推進劑起了重要作用。
The electrolytic decomposition mechanism and the effect of pressure on the electrolytic decomposition of HAN aqueous solution have been discussed in this research. According to the experimental results, the electrolytic decomposition is indeed an electrochemical reaction, and the electrolytic decomposition product nitric acid also induces the autocatalytic reaction. A high nitric acid concentration at the anode during the electrolysis process accelerates the autocatalytic reaction, and the high concentration of hydroxylamine at the cathode inhibits the autocatalytic reaction. In high-pressure electrolytic decomposition, the grotthuss mechanisms is the main items affecting the decomposition of HAN. The time-resolved gas-phase product analysis shows that the decomposition gas contains H2O, HNO3, and nitrogen oxides NO, NO2, N2O, and the main products of electrolytic decomposition occur almost simultaneously. Gas analysis show the ratio of nitrogen oxides in electrolysis and thermal decompositions and under different pressures are different, again indicating that electrolysis is indeed an electrochemical reaction. The electrolysis voltage is the factor that determines whether the reaction will occur, and the electric field strength will accelerate the reaction rate. The concentration affects the ionic density and liquid viscosity, which affects the rate of the electrolytic reaction. Electrolysis of SHP163 will have a two-stage reaction and is not suitable as a propellant for electrolytic ignition. Overall, these results clarify electrolytic decomposition rather than thermal decomposition, which is vital for future applications of electrolysis to ignite HAN-based propellants.
[1] A. Mayer, W. Wieling (2018), Green propulsion research at TNO the netherlands, Transactions on Aerospace Research 4(253), 1-24.
[2] M. Negri (2018), New technologies for ammonium dinitramide based monopropellant thrusters – The project RHEFORM, Acta Astronautica 143, 105-117.
[3] T. Pultarova, Hydrazine ban could cost Europe’s space industry billions. https://spacenews.com/hydrazine-ban-could-cost-europes-space-industry-billions/, access on July 25, 2022.
[4] K. Anflo, T. Grönland, G. Bergman, M. Johansson, R. Nedar, Towards green propulsion for spacecraft with ADN-based monopropellants, AIAA Paper2002-3847, 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Indianapolis, Indiana, July, 2002.
[5] H. McLean, W. Deininger, B. Marotta, R. Spores, R. Masse, T. Smith, M. Deans, J. Yim, G. Williams, J. Sampson, J. Martinez, E. Cardiff, C. Bacha, Green propellant infusion mission program overview, status, and flight operations, AIAA Paper2015-3751, 51st AIAA/SAE/ASEE Joint Propulsion Conference, Orlando, Florida, July, 2015.
[6] H. Shiraiwa, T. Tanaka, T. Furukawa (2019), Green propulsion systems for satellites - development of thrusters and propulsion systems using low-toxicity propellants, Mitsubishi Heavy Industries Technical Review 56(1), 1-7.
[7] K. Hori, T. Katsumi, S. Sawai, N. Azuma, K. Hatai, J. Nakatsuka (2019), HAN‐based green propellant, SHP163 – Its R&D and test in space, Propellants, Explosives, Pyrotechnics 44(9), 1080-1083.
[8] R. Spores, R. Masse, S. Kimbrel, C. McLean (2013), GPIM AF-M315E propulsion system, AIAA Paper2015-3573, 51st AIAA/SAE/ASEE Joint Propulsion Conference, Orlando, Florida, July, 2015.
[9] M. Farshchi, V. Vaezi, B. Shaw (2002), Studies of HAN-based monopropellant droplet combustion, Combustion Science and Technology 174(7), 71–97.
[10] K. Hori, Lessons learned in the thruster tests of HAN. In: D.L Luca, T. Shimada, V. Sinditskii, M. Calabro (eds), Chemical Rocket Propulsion. Springer Aerospace Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-27748-6_33
[11] G. Klingenberg, H. Frieske & H. Rockstroh, Electrical ignition of HAN-based liquid propellants, European Research Office the U.S. Army, DAJA 45-86-C-0029, 1990.
[12] G. Klingenberg, H. Rockstroh, J. Knapton, J. Despirito, H.J. Frieske (1990), Investigation of liquid gun propellants: electrical ignition of LGP 1846, Propellants, Explosives, Pyrotechnics 15(3), 103–114.
[13] G. Risha, R. Yetter, V. Yang (2007), Electrolytic-induced decomposition and ignition of HAN-based liquid monopropellants, International Journal of Energetic Materials and Chemical Propulsion 6, 575−588.
[14] P. Wasserscheid, T. Welton, Ionic Liquids in Synthesis, Wiley-VCH, New York, 2003.
[15] R. Rogers, K. Seddon, S. Volkov, Green industrial, Applications of Ionic Liquids, Springer, New York, 2003.
[16] Q. Zhang, J. Shreeve (2014), Energetic ionic liquid as explosives and propellant fuels: a new journey of ionic liquid chemistry, Chemcial Review 114(20), 10527-10574.
[17] A. Greer, J. Jacquemin, C. Hardacre (2020), Industrial applications of ionic liquids, Molecules 25(21), 5207.
[18] 陳泊余 (2006),離子液體的發展及其在電化學與其它領域的應用-獨特的溶劑系統,化學64(2),235-259。
[19] X. Zeng, Z. Wang, A. Rehman, Electrochemistry in ionic liquids: Volume 1: Fundamentals, Springer, International Publishing, 2015.
[20] T. Greaves, C. Drummond (2008), Protic ionic liquids: properties and applications, Chemical Review 108(1), 206-237.
[21] R. Hayes, G. Warr, R. Atkin (2015), Structure and nanostructure in ionic liquids, Chemical Review 115(13), 6537-6426.
[22] H. Meng, P. Khare, G. Risha, R. Yetter & V. Yang, Decomposition and ignition of HAN-based monopropellants by electrolysis, AIAA Paper2009-451, 47th AIAA Aerospace Science Meeting & Exhibit, Orlando, Florida, January, 2009.
[23] R. Yetter, V. Yang, I. Aksay, F. Dryer, Meso and micro scale propulsion concepts for small spacecraft, Air Force Office of Scientific Research, AFRL-SR-AR-TR-05-0014, 2005
[24] M.H. Wu, R. Yetter (2009), A novel electrolytic ignition monopropellant microthruster based on low temperature co-fired ceramic tape technology, Lab Chip 9, 910−916.
[25] P. Khare, V. Yang, H. Meng, G. Risha, R. Yetter (2015), Thermal and electrolytic decomposition and ignition of HAN−water solutions, Combustion Science and Technology 187, 1065−1078.
[26] W. Chai, K. Cheah, H. Meng, G. Li (2019), Experimental and analytical study on electrolytic decomposition of HAN-water solution using graphite electrodes, Journal of Molecular Liquids 293, 111496.
[27] W. Chai, Characterization & analysis on electrolytic decomposition of hydroxylammonium nitrate (HAN) ternary mixtures in microreactors, Ph.D. Dissertation, Univerisity of Nottingham, Malaysia, 2017.
[28] E. Crisp, Electrocatalytic decomposition of HAN-based ionic liquid oxidizers, Master Thesis, The Pennsylvania State University, U.S.A., 2021.
[29] H. OuYang, Synthesis and atmospheric electrolytic decomposition characteristics of hydroxyl-ammonia nitrate aqueous solutions, Master Thesis, National Cheng Kung University, Taiwan, 2020.
[30] D. Sun, Q. Dai, W. Chai, W. Fang, H. Meng (2022), Experimental studies on parametric effects and reaction mechanisms in electrolytic decomposition and ignition of HAN solutions, ACS Omega 7, 18521-18530.
[31] W. Chai, K. Cheah, K. Koh, J. Chin, T. Chik (2016), Parametric studies of electrolytic decomposition of hydroxylammonium nitrate (HAN) energetic ionic liquid in microreactor using image processing technique, Chemical Engineering Jounal 296, 19−27.
[32] B. Kuo, A study on the electrolytic decomposition of HAN-based propellants for microthruster applications, Master Thesis, The Pennsylvania State University, U.S.A., 2010.
[33] K. Koh, J. Chin, T. Chik (2013), Role of electrodes in ambient electrolytic decomposition of hydroxylammonium nitrate (HAN) solutions, Propulsion and Power Research 2(3), 194−200.
[34] W. Chai, D. Sun, K. Cheah, G. Li, H. Meng (2020), Co-electrolysis-assisted decomposition of hydroxylammonium nitrate−fuel mixtures using stainless steel−platinum electrodes, ACS Omega 5, 19525-19532.
[35] J. Rossmeisla, Z.W. Qub, H. Zhub, G.J. Kroesb, J.K. Nørskov (2007), Electrolysis of water on oxide surfaces, Journal of Electroanalytical Chemistry 607, 83-89.
[36] S. Marini, P. Salvi, P. Nelli, R. Pesenti, M. Villa, M. Berrettoni, G. Zangari, Y. Kiros (2012), Advanced alkaline water electrolysis, Electrochimica Acta 82, 384-391.
[37] F. Sapountzi, J. Gracia, C. Weststrate, H. Fredriksson, J. Niemantsverdriet (2017), Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas, Progress in Energy and Combustion Science 58, 1-35.
[38] D. Giovanelli, N. Lawrence, R. Compton (2003), Electrochemistry at high pressure: a review, Electroanalysis 16(10), 789-810.
[39] A. Pospiech1, Z. Wojnarowska, S. Bielowka, J. Pionteck, M. Paluch (2013), Effect of pressure on decoupling of ionic conductivity from structural relaxation in hydrated protic ionic liquid, lidocaine HCl, The Journal of Chemical Physics 138(20), 204502.
[40] F. Pabst, Z. Wojnarowska, M. Paluch, T. Blochowicz (2021), On the temperature and pressure dependence of dielectric relaxation processes in ionic liquids, Physical Chemistry Chemical Physics 23, 14260-14275.
[41] Z. Wojnarowska, Y. Wang, J. Pionteck, K. Grzybowska, A. Sokolov, M. Paluch (2013), High pressure as a key factor to identify the conductivity mechanism in protic ionic liquids, Physical Review Letters 111, 225703.
[42] E. Thoms, Z. Wojnarowska, P. Goodrich, J. Jacquemin and M. Paluch1 (2017), Communication: inflection in the pressure dependent conductivity of the protic ionic liquid C8HIM NTf2, The Journal of Chemical Physics 146, 181102.
[43] A. Mariani, R. Caminiti, M. Campetellaa, L. Gontrani (2016), Pressure-induced mesoscopic disorder in protic ionic liquids: first computational study, Physical Chemistry Chemical Physics 18, 2297-2302.
[44] N. Klein, K.N. Wong, An infra-red investigation of HAN-based liquid propellants, US Army Ballistic Research Laboratory, AD-A187 226, 1987.
[45] D.L. Frasco, E.L. Wangner (1959), Interpretation of the infrared spectra of the solid hydroxylammonium halides, The Journal of Chemical Physics 30, 1124.
[46] J.C. Oxley, K.R. Brower, Thermal decomposition of hydroxylamine nitrate, Proceedings of the SPIE 872, 63-70, May 1988, doi: 10.1117/12.943754.
[47] H. Lee, T.A. Litzinger (2001), Thermal decomposition of HAN-based liquid propellant, Combustion and Flame 127(4), 2205-2222.
[48] M. Hughes, G. Stedman (1963), Kinetics and mechanism of the reaction between nitrous acid and hydroxylamine, Journal of the Chemical Society, 2824-2830.
[49] M. Hughes, T. Morgan, G. Stedman (1968), The mechanism of nitrosation of protonated amino-compounds, Chemical Communications 24, 241-242.
[50] M. Hughes (1968), Hyponitrites, Quarterly Reviews, Chemical Society 22, 1-13.
[51] J. Pembridge, G. Stedman (1979), Kinetics, mechanism, and stoicheiometry of the oxidation of hydroxylamine by nitric acid, Dalton Transactions, 1657-1663.
[52] G. Bourke, G. Stedman (1992), Mechanism of the acid catalysed pathway for the nitrosation of hydroxylamine, Journal of the Chemical Society 2, 161-162.
[53] D.G. Harlow, S. Agnew, S. Barney, R. Carber, M. Lewis, Techinal report on hydroxyamne nitrate, U.S. Department of Energy, DOC/EH-0555, 1998.
[54] Q. Su, C. Félez, M. Jensen, B. Smets (2019), Abiotic nitrous oxide (N2O) production is strongly pH dependent, but contributes little to overall N2O emissions in biological nitrogen removal systems, Environmental Science & Technology 53(7), 3508−3516.
[55] K. Zhang, S.T. Thynell (2018), Thermal decomposition mechanism of aqueous hydroxylammonium nitrate (HAN): molecular simulation and kinetic modeling, The Journal of Physical Chemistry A 122(41), 8086–8100.
[56] T. Katsumi, T. Inoue, J. Nakatsuka, K. Hasegawa, K. Kobayashi, S. Sawai, K. Hori (2012), HAN-based green propellant, application, and its combustion mechanism, Combustion, Explosion, and Shock Waves 48(5), 536–543.
[57] T. Katsumi, H. Kodama, T. Matsuo, H. Ogawa, N. Tsuboi, K. Hori (2009), Combustion characteristics of a hydroxylammonium nitrate based liquid propellant. Combustion mechanism and application to thrusters, Combustion, Explosion, and Shock Waves 45(4), 442-453.
[58] R.E. Ferguson, A.A. Esparza, E. Shafirovich (2021), Combustion of aqueous HAN/methanol propellants at high pressure, Proceedings of the Combustion Institute 38(2), 3295-3302.
[59] T. Katsumi, K. Hori (2021), Successful development of HAN based green propellant, Engertic Materials Frontiers 2(3),228-237.
[60] J. Vanderhoff, S. Bunte, P. Donmoyer, Electrical conductance of liquid propellants: Theory and results, US Army Ballistic Research Laboratory, AD-A170 361, 1996.
[61] K. Kim, I. Kim, G. Park, E. Lee (2016), Electrolytic decomposition of ammonia to nitrogen in a multi-cell-stacked electrolyzer with a self-pH-adjustment function, Journal of Applied Electrochemistry 36, 1415-1426.
[62] E. Gain, S. Laborie, P. Viers, M. Rakib, G. Durand, D. Hartmann (2002), Ammonium nitrate wastewater treatment by coupled membrane electrolysis and electrodialysis, Journal of Applied Electrochemistry 32, 969-975.
[63] DSG645:https://www.teo.com.tw/products?product_id=655, access on 31 August, 2022.
[64] PSW:https://www.gwinstek.com/zh-TW/products/detail/PSW-Series, access on 31 August, 2022.
[65] Miro 310 Lab: http://www.avelocidad.com/detalle.php?id_prod=26, access on 31 August, 2022.
[66] Omega:https://www.omega.com/en-us/resources/thermocouples-response-time, access on 30 July, 2022.
[67] Rightek technologies: https://www.rightek.com.tw/product_list/%E5%82%85%E7%AB%8B%E8%91%89%E8%BD%89%E6%8F%9B%E7%B4%85%E5%A4%96%E7%B7%9A%E5%85%89%E8%AD%9Cftir%E5%88%86%E6%9E%90%E5%8E%9F%E7%90%86/, access on 30 July, 2022.
[68] MRU: https://www.mru.eu/en/products/detail/mgaprime/, access on 31 August, 2022.
[69] Jing Teng technologies: https://www.pcbshop.org/tw/supplier/product_details.asp?ProID=1530&SupID=873, access on 30 July, 2022.
[70] Kctech: https://www.kctech.com.tw/%E5%A6%82%E4%BD%95%E4%BD%BF%E7%94%A8%E6%8E%83%E6%8F%8F%E5%BC%8F%E9%9B%BB%E5%AD%90%E9%A1%AF%E5%BE%AE%E9%8F%A1sem%E9%80%B2%E8%A1%8Cedx%E5%88%86%E6%9E%90/, access on 30 July, 2022.
[71] N. Klein, Ignition and combustion of the HAN-based liquid propellants, the 27th JANNAF Combustion Subcommittee Meeting, Cheyenne, WY, Nov 1990. CPIA Pub. 557, Vol. 1, pp. 443-450.