簡易檢索 / 詳目顯示

研究生: 劉泰翔
Liu, Tai-Hsiang
論文名稱: Cu2ZnSnS4xSe4(1-x) 粉末合成機制及光電特性和熱蒸鍍界面應用研究
The Synthesis Mechanism, Optoelectronic Properties and Thermal-evaporated Interface Characteristic of Cu2ZnSnS4xSe4(1-x) Powder
指導教授: 洪飛義
Hung, Fei-Yi
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米科技暨微系統工程研究所
Institute of Nanotechnology and Microsystems Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 65
中文關鍵詞: Cu2ZnSnS4(CZTS)摻雜Se界面機制
外文關鍵詞: Cu2ZnSnS4(CZTS), doped Se, interface mechanism
相關次數: 點閱:64下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本次研究中,利用元素粉末彼此熔沸點差異,使用二段式燒結的方式合成出四方晶系(tetragonal)的Cu2ZnSnS4xSe4(1-x)粉末,X值定義為S/S+Se,並控制在 0至1.0之間,依照元素莫耳比例選擇0, 0.25, 0.5, 0.75及1.0五種系統進行研究,實驗中使用高純度銅粉、鋅粉、錫粉、硫粉、硒粉五種粉末成功合成出平均粒徑約160-220nm之CZTSSe粉末。
    在CZTSSe粉末中,藉由調整硫與硒比例,進而探討Se添加對五元CZTSSe粉末光性與電性之影響。實驗結果發現,CZTSSe粉末具有CZTS與CZTSe兩種相組成,在特定的比例組成其光或電特性表現更優於四元系統。
    界面特性研究之光電轉換層CZTSSe上下分別為ZnS膜以及Mo層,實驗中分別使用化學水浴沉積法製作ZnS薄膜以及金屬鉬片做為基層,以CZTSSe粉末(S:Se =1:1)為材料,藉由真空熱蒸鍍儀將CZTSSe粉末蒸鍍上Mo基板以及ZnS層,形成CZTSSe/Mo與CZTSSe/ZnS兩種界面結構,透過熱處理進而探討相組成與界面擴散機制,以提出其對CZTSSe太陽能薄膜電池元件應用的影響。

    In this study, we used two-step sintering process to synthesize tetragonal Cu2ZnSnS4xSe4(1-x) by the difference of melting and boiling point of each elemental powder. The value for X was defined as S/S+Se which was confined in the range from 0 to 1.0, and divided into five mole ratio of 0, 0.25, 0.5, 0.75 and 1.0. Then we used the Cu, Zn, Sn, S, Se powder and the furnace to synthesize CZTSSe powder with the average diameter from 160 to 220nm.
    In this CZTSSe powder, by the way of adjust the ratio of S:Se, we discussed the optoelectronic effect as adding Se on five-element CZTSSe powder. From the experiment result, CZTSSe powder had CZTS and CZTSe these two phase composition. In particular ratio of S:Se, the optoelectronic characteristics even was even better than four-element system.
    The interface characteristics study were CZTSSe/Mo and CZTSSe/ZnS. In the experiment, we used chemical-bathing deposition to produce ZnS film and select Mo metal sheet as substrate. And then we coated CZTSSe on Mo and ZnS layers with CZTSSe (S:Se=1:1) powder via thermal evaporator. Then CZTSSe/Mo and CZTSSe/ZnS interfaces were formed. These two sample were annealed to discuss the phase composition and diffusion mechanism in order to find out the effect on component application.

    目錄: 中文摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 第一章 前言 1 1.1 研究背景 1 1.2 研究動機與目的 3 第二章 文獻回顧與理論說明 7 2.1 CZTS/CZTSe真空/非真空製程 7 2.1.1 真空蒸鍍製程 7 2.1.2 非真空製程 8 2.1.3 水溶液法製程 9 2.2 CZTS/CZTSe薄膜太陽能電池結構 10 2.3 CZTS/CZTSe吸收層特性簡介 10 2.4 ZnS/CdS緩衝層特性簡介 11 2.5 界面機制特性 11 第三章 實驗步驟方法與實驗設備 16 3.1 實驗藥品及材料 16 3.2 CZTSSe粉體/薄膜製備及分析 16 3.2.1 CZTSSe粉體製作流程 16 3.2.2 CZTSSe薄膜製作流程 17 3.3 配置不同S:Se 比例之五元相粉末 18 3.4 薄膜緩衝層ZnS之製備 19 3.5 複合層CZTSSe/Mo 及CZTSSe/ZnS之製備 20 3.6 材料分析儀器 20 3.6.1 掃描式電子顯微鏡與聚焦離子束 20 3.6.2 X-ray 繞射儀 21 3.6.3 微拉曼及微光激發光譜儀 22 3.6.4 穿透式電子顯微鏡 23 3.6.5 四點探針 24 3.6.6 分光光譜儀 25 第四章 結果與討論 35 4.1 CZTSSe粉末表面形貌及燒結製程討論 35 4.2 五元相 XRD繞射圖分析 36 4.3 拉曼光譜分析 37 4.4 顯微結構特性解析 38 4.5 電性探討 38 4.6 吸收反射分析 39 4.7 元件結構界面機制 40 4.7.1 CZTSSe/Mo界面行為 40 4.7.2 CZTSSe/ZnS界面行為 41 第五章 結論 61 參考文獻 62 圖目錄: 圖1-1 CIGS被Zn和Sn取代了原本的In和Ga而新生CZTS的概念 5 圖1-2 Kesterite tetragonal之CZTS示意圖 6 圖2-1 Co-sputter 儀器示意圖 13 圖2-2 CZTS 各層側面縱切觀察示意圖 14 圖2-3 CZTS 晶格架構 15 圖3-1 CZTS粉體製程流程及所使用設備 26 圖3-2 水溶液法圖示 27 圖3-3 熱蒸鍍法設備圖 28 圖3-4 晶格面距離與繞射波長和角度的關係 29 圖3-5 Anti-stokes與stokes 示意圖 30 圖3-6 拉曼儀器圖以及架構原理 31 圖3-7 穿透式電子顯微鏡原理示意圖 32 圖3-8 四點探針架構 33 圖3-9 分光光譜儀設備圖 34 圖4-1 CZTSSe粉末形貌 43 圖4-2 粉末XRD繞射分析 44 圖4-3 CZTS(Se)粉末之XRD分析 45 圖4-4 CZTSSe粉末拉曼光譜 46 圖4-5 CZTSSe (S:Se=13:17)穿透式電子顯微鏡分析結果 47 圖4-6 五種不同CZTSSe粉末的電阻值比較 48 圖4-7 不同CZTSSe粉末的吸收反射分析 49 圖4-8 CZTS基層結構與製程示意圖 50 圖4-9 Mo SEM. 表面形貌及EDS分析 51 圖4-10 CZTSSe/Mo表面形貌及EDS分析 52 圖4-11 ZnS表面形貌 54 圖4-12 CZTSSe/ZnS表面形貌及EDS分析 55 圖4-13 CZTSSe/Mo界面組成結構特性與Mo原子分佈 57 圖4-14 CZTSSe/ZnS界面組成與結構特性 59

    1. http://solar.ofweek.com/2011-06/ART-260018-9080-28469602.html.
    2. http://www.semiconductor-today.com/news_items/2011/MAR/REDINGER_160311.html.
    3. S. C. Riha, B. A. Parkinson, A. L. Prieto, J. Am. Chem. Soc., 2009, 131, 12054–12055.
    4. Q. Guo, H. W. Hillhouse, R. Agrawal, J. Am. Chem. Soc., 2009, 131, 11672–11673.
    5. C. Steinhagen, M. G. Panthani, V. Akhavan, B. Goodfellow, B. Koo, B. A. Korgel, J. Am. Chem. Soc., 2009, 131, 12554–12555.
    6. X. Zhang, X. Shi, W. Ye, C. Ma, C. Wang, Appl. Phys. A: Mater. Sci. Process. 2009, 94, 381.
    7. Y. B. Kishore Kumar, G. Suresh Babu, P. UdayBhaskar, V. Sundara Raja, Sol. Energy Mater. Sol. Cells, 2009, 93, 1230–1237.
    8. T. Tanaka, T. Nagatomo, D. Kawasaki, M. Nishio, Q. Guo, A. Wakahara, A. Yoshida, H. Ogawa, J. Phys. Chem. Solids, 2005, 66, 1978–1981.
    9. K. Oishi, G. Saito, K. Ebina, M. Nagahashi, K. Jimbo, W.S. Maw, H. Katagiri, M.Yamazaki, H. Araki, A. Takeuchi, Thin Solid Films, 2008, 517, 1449–1452.
    10. K. Moriya, K. Tanaka, H. Uchiki, Jpn. J. Appl. Phys. 2005, 44, 715–717.
    11. J. J. Scragg, P.J. Dale, L.M. Peter, Electrochem. Commun. 2008, 10, 639–642.
    12. N. Kamoun, H. Bouzouita, B. Rezig, Thin Solid Films 2007, 515, 5949–5952.
    13. K. Moriya, K. Tanaka, H. Uchiki, Jpn. J. Appl. Phys. 2008, 47, 602–604.
    14. H. Katagiri, K. Saitoh, T. Washio, H. Shinohara, T. Kurumadani, S. Miyajima, Sol.Energy Mater. Sol. Cells, 2001,65, 141–148.
    15. Shavel, J. Arbiol and A. Cabot, J. Am. Chem. Soc., 2010, 132, 4514–4515.
    16. L. J. Chen , J. D. Liao, Y. J. Chuang and Y. S. Fu, Journal of Nanopart Research, 2011, 13, 783.
    17. A. V. Moholkar, S. S. Shinde, A. R. Babar, K. U. Sim, H. K. Lee, K. Y. Rajpure, P. S. Patil, C. H. Bhosale, J. H. Kim, Journal of Alloys and Compounds 509 (2011) 7439-7446.
    18. Pagliaro M, Ciriminna R, Palmisano G. Flexible solar cells. Chem. Sus. chem., 2008, 1(11): 880-891. Repins I, Contreras M A, Egaas B, et al. 19.9%-efficient
    19. Y. Wang, H. Gong, Journal of Alloys and Compounds 509 (2011) 9627-9630.
    20. T. Prabhakar, N. JuJampana, Solar Energy Materials & Solar Cells 95 (2011) 1001-1004.
    21. K. Tanaka, Y. Fukui, N. Moritake, H. Uchiki, Solar Energy Materials & Solar Cells 95 (2011) 838-842.
    22. L. Sun, J. He, H. Kong, F. Yue, P. Yang, J. Chu, Solar Energy Materials & Solar Cells 95 (2011) 2907-2913.
    23. A. Nagaoka, K. Yoshino, H. Taniguchi, T. Taniyama, H. Miyake, Journal of Crystal Growth 341(2012) 38–41.
    24. http://www.chemicalelements.com/elements/se.html
    25. C. H. Wang, F. Y. Hung, T. S. Lui, L. H. Chen, Materials Transactions 51 (1) (2010) 186-191.
    26. Z. S. Hu, F. Y. Hung, S. J. Chang, K. J. Chen, W. L. Wang, S. J. Young, T. P. Chen, J. of Alloys and Compounds 509 (2011)758-763, 201.
    27. P. K. Sarswat, M. Snure, M. L. Free, A. Tiwari, Thin Solid Films 520 (2012) 1694-1697.
    28. K. Tanaka, Y. Fukui, N. Moritake, H. Uchiki, Solar Energy Materials & Solar Cells 95 (2011) 838–842.
    29. M. Kauk, K. Muska, M. Altosaar, J. Raudoja, M. Pilvet, T. Varema, K. Timmo, O. Volobujeva, Energy Procedia 10 ( 2011 )197-202.
    30. https://docs.google.com/viewer?a=v&q=cache:4IMOJ-WN4M0J:140.117.32.195
    31. Ennaoui A., Lux-Steiner M., Weber A., et al. Cu2ZnSnS4 thin film solar cells from electroplated precursors: novel low-cost perspective. Thin Solid Films, 2009, 517(7): 2511-2514.
    32. Tanaka K., Moritake N., Uchiki H. Preparation of Cu2ZnSnS4 thin films by sulfurizing Sol-Gel deposited precursors. Solar Energy Materials & Solar Cells, 2007, 91(13): 1199-1201.
    33. ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor. Prog. Photovolt. Res. Appl., 2008, 16(3): 235-239.
    34. Gur I., Fromer N. A., Geier M. L., et al. Air-stable all-inorganic nanocrystal solar cells processed from solution. Science, 2005, 310(5747): 462-465.
    35. Todorov T. K, Reuter K. B., Mitzi D. B. High-efficiency solar cell with earth-abundant liquid-processed absorber. Adv. Mater., 2010, 22(20): E156-E159.
    36. Shockley W, Queisser H. J. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys., 1961, 32(3): 510-519.
    37. Katagiri H. Cu2ZnSnS4 thin film solar cells. Thin Solid Films, 2005, 480–481: 426-432.
    38. Bhattacharya R. N., Batchelor W., Hiltner J. F., et al. Thin-film CuIn1-xGaxSe2 photovoltaic cells from solution-based precursor layers. Appl. Phys. Lett., 1999, 75(10): 1431-1437.
    39. http://www.hk-phy.org/atomic_world/tem/tem02_c.html
    40. https://docs.google.com/viewer?a=v&q=cache:NkmjpxUwKF0J:140.116.176.21/www/technique/SOP/
    41. Luther J. M., Law M., Beard M. C., et al. Schottky solar cells based on colloidal nanocrystal films. Nano. Lett., 2008, 8(10): 3488-3492.
    42. Lu X. T., Zhuang Z. B., Peng Q., et al. Wurtzite Cu2ZnSnS4 nanocrystals: a novel quaternary semiconductor. Chem. Commun., 2011, 47(11): 3141-3143.
    43. Fernandes P A, Salomé P M P, da Cunha A F. Growth and Raman scattering characterization of Cu2ZnSnS4 thin films. Thin Solid Films, 2009, 517(7): 2519-2523.
    44. Cheng Y. C., Jin C. Q., Gao F., et al. Raman scattering study of zinc blende and wurtziteZnS. J. Appl. Phys., 2009, 106(12): 123505-123509.
    45. Fernandes P. A., Salomé P. M. P., da Cunha A. F. A study of ternary Cu2SnS3 and Cu3SnS4 thin films prepared by sulfurizing stacked metal precursors. J. Phys. D: Appl. Phys., 2010, 43(21): 215403-215413.
    46. Jun He, Lin Sun, Shiyou Chen, Ye Chen, Pingxiong Yang, Junhao Chu. Journal of Alloys and Compounds 511 (2012) 129– 132
    47. G. Zha, W. Jie, T. Tan, X. Wang, Nuclear Instruments and Methods in Physics Research A 566 (2006) 495-499.
    48. D. B. Mitzi, O. Gunawan, T. K. Todorov, K. Wang, S. Guha, Solar Energy Materials & Solar Cells 95 (2011) 1421-1436.
    49. O. Watanabe and S. Tamaki, Physical Properties of the Se-S system ElectrochimicaActa. 1968. Vol. 13. 11 to 17.

    下載圖示 校內:2014-08-15公開
    校外:2015-08-15公開
    QR CODE