簡易檢索 / 詳目顯示

研究生: 郭致嘉
Guo, Jhih-Jia
論文名稱: SH波與P波通過不完美界面的反射與折射分析
Reflection and refraction of SH and P waves at a plane imperfect interface
指導教授: 陳東陽
Chen, Tung-Yang
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 96
中文關鍵詞: 不完美界面諧和波傳相位差
外文關鍵詞: imperfect interface, harmonic wave propagation, phase difference
相關次數: 點閱:204下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 不完美界面是由一層厚度極薄的材料模擬等效而成,相較於完美界面,其特色是材料在界面上的位移或者應力不一定會連續。而透過改變界面的材料係數,可以使波傳經過界面時的相位差產生改變。本文主要透過調控等效後的界面參數的方式,來探討波傳在經過不完美界面後,如何能有最大的相位差範圍與其限制。首先,我們建立彈性波傳的運動方程,並接著介紹不完美界面的物理模型與其邊界條件的建立。再來,分析時間諧和的SH波與P波在經過兩種不完美界面時所產生的相位差。最後我們會根據得到的結論,簡述未來或可持續研究的方向。

    In this thesis, the imperfect interface is assumed to be an extremely thin interphase interface between two materials. Boundary conditions on such interface including tractions and displacements are not required to be continuous. According to the stiffness of the interphase material, two different types of imperfect interface and their interface conditions are introduced which are HS (high stiffness) type and LS (low stiffness) type. By adjusting the parameter which also means the effective elastic moduli of the interphase material, we investigate the phase difference when two elastic plane waves, SH waves and P waves propagate through the imperfect interface of two types. The purpose of this research is to find the widest range of phase difference and to investigate its limitation so that it might be possible to design metasurface by using the concept of imperfect interface in the future.

    中文摘要 i Abstract ii 誌謝 v 目錄 vi 圖目錄 viii 表目錄 xii 第一章 緒論 1 1.1 文獻回顧 1 1.2 研究動機 3 1.3 論文簡介 4 第二章 彈性波傳與不完美界面 6 2.1 彈性波的簡介 6 2.2 彈性波的運動方程 6 2.3 位移勢能場(Displacement potential) 7 2.4 平面諧和波 8 2.5 波的相位 9 2.6 廣義不完美界面 11 2.6.1 等向性材料下的不完美界面模型 13 2.6.2 HS型不完美界面 15 2.6.3 LS型不完美界面 17 第三章 SH波通過HS型與LS型不完美界面 19 3.1 建立SH波方程式與HS型不完美界面的界面條件 19 3.2 數值模擬的參數設定 23 3.3 HS不完美界面反射SH波的相位差 24 3.3.1. 上層材料與入射角的影響 30 3.4 HS不完美界面折射SH波的相位差 31 3.5 HS型不完美界面振幅大小比值 33 3.6 建立SH波方程式與LS型不完美界面的界面條件 37 3.7 LS不完美界面反射SH波的相位差 40 3.8 LS不完美界面折射SH波的相位差 41 3.9 LS型不完美界面振幅大小比值 42 第四章 P波通過HS型與LS型不完美界面 44 4.1 建立P波方程式與HS型不完美界面的界面條件 44 4.2 參數的選擇與設定 47 4.3 P波經HS型不完美界面時的波傳相位差 49 4.4 建立P波方程式與LS型不完美界面的界面條件 58 4.5 參數的選擇與設定 60 4.6 P波經LS型不完美界面時的波傳相位差 62 第五章 結論與未來展望 68 5.1 結論 68 5.2 未來展望 69 參考文獻 71 附錄A : SH波的位移與應力表示式 74 附錄B : SH波通過HS型不完美界面之相位差分析圖 75 附錄C : P波的位移與應力表示式 81 附錄D : P波通過HS型不完美界面之相位差分析圖 84 附錄E : P波通過LS型不完美界面之相位差分析圖 92

    Achenbach, J., Wave propagation in elastic solids, Elsevier (1973)

    Benveniste, Y. "The effective mechanical behaviour of composite materials with imperfect contact between the constituents." Mechanics of Materials 4, 197-208 (1985)

    Benveniste, Y. and T. Chen. "On the Saint-Venant torsion of composite bars with imperfect interfaces." Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 457, 231-255 (2001)

    Benveniste, Y. and T. Miloh. "Imperfect soft and stiff interfaces in two-dimensional elasticity." Mechanics of Materials 33, 309-323 (2001)

    Chen, T., M.-S. Chiu and C.-N. Weng. "Derivation of the generalized Young-Laplace equation of curved interfaces in nanoscaled solids." Journal of Applied Physics 100, 074308 (2006)

    Chen, T., G. J. Dvorak and C. C. Yu. "Solids containing spherical nano-inclusions with interface stresses: Effective properties and thermal–mechanical connections." International Journal of Solids and Structures 44, 941-955 (2007)

    Golub, M. V. and A. Boström. "Interface damage modeled by spring boundary conditions for in-plane elastic waves." Wave Motion 48, 105-115 (2011)

    Graff, K., Wave motion in elastic solids, Courier Corporation (1975)

    Gu, S. T. and Q. C. He. "Interfacial discontinuity relations for coupled multifield phenomena and their application to the modeling of thin interphases as imperfect interfaces." Journal of the Mechanics and Physics of Solids 59, 1413-1426 (2011)

    Gu, S. T., J. T. Liu and Q. C. He. "Size-dependent effective elastic moduli of particulate composites with interfacial displacement and traction discontinuities." International Journal of Solids and Structures 51, 2283-2296 (2014)

    Gurtin, M. E. and A. I. Murdoch. "A continuum theory of elastic material surfaces." Archive for Rational Mechanics and Analysis 57, 291-323 (1975)

    Gurtin, M. E. and A. I. Murdoch. "Effect of surface stress on wave propagation in solids." Journal of Applied Physics 47, 4414-4421 (1976)

    Hashin, Z. "Thermoelastic properties of fiber composites with imperfect interface." Mechanics of Materials 8, 333-348 (1990)

    Hashin, Z. "The Spherical Inclusion With Imperfect Interface." Journal of Applied Mechanics 58, 444-449 (1991)

    Hashin, Z. "Thin interphase/imperfect interface in elasticity with application to coated fiber composites." Journal of the Mechanics and Physics of Solids 50, 2509-2537 (2002)

    Mei, J. and Y. Wu. "Controllable transmission and total reflection through an impedance-matched acoustic metasurface." New Journal of Physics 16, 123007 (2014)

    Ru, Y., G. Wang and T. Wang. "Diffractions of Elastic Waves and Stress Concentration Near a Cylindrical Nano-Inclusion Incorporating Surface Effect." Journal of Vibration and Acoustics-transactions of the ASME 131, (2009)

    Schoenberg, M. "Elastic wave behavior across linear slip interfaces." The Journal of the Acoustical Society of America 68, 1516-1521 (1980)

    Shen, X., C.-T. Sun, M. V. Barnhart and G. Huang. "Elastic wave manipulation by using a phase-controlling meta-layer." Journal of Applied Physics 123, 091708 (2018)

    Shuttleworth, R. "The Surface Tension of Solids." Proceedings of the Physical Society. Section A 63, 444-457 (1950)

    Velasco, V. R. and F. García-Moliner. "Surface Effects in Elastic Surface Waves." Physica Scripta 20, 111-120 (1979)

    Wang, G. "Diffraction of plane compressional wave by a nanosized spherical cavity with surface effects." Applied Physics Letters 90, 211907 (2007)

    Wang, G. "Diffraction of shear waves by a nanosized spherical cavity." Journal of Applied Physics 103, 053519 (2008)

    Wang, G., T. J. Wang and X. Q. Feng. "Surface effects on the diffraction of plane compressional waves by a nanosized circular hole." Applied Physics Letters 89, 231923 (2006)

    Wusheng, Z., C. Weizhong and Y. Diansen. "Effect of an Imperfect Interface on Seismic Response of a Composite Lining Tunnel Subjected to SH-Waves." International Journal of Geomechanics 18, 04018177 (2018)

    Yu, N., P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso and Z. Gaburro. "Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction." Science 334, 333-337 (2011)

    呂孟學,具波傳導向機制之彈性超穎介面分析與設計,國立成功大學土木工程所碩士論文, (2019)。

    趙詳傑,不完美界面之彈性波與表面波波傳行為分析,國立成功大學土木工程所碩士論文, (2019)。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE