簡易檢索 / 詳目顯示

研究生: 許銘晃
Hsu, Ming-huang
論文名稱: 乾燥快速顆粒流在移動斜板上之運動分析
Rapid motion of a dry granular matter down an inclined moving plane
指導教授: 方中
Fang, Chung
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 64
中文關鍵詞: 顆粒物質修正Good-Cowin理論Müller-Liu熵增原理
外文關鍵詞: Goodman-Cowin theory, Müller-Liu entropy principle, granular matters
相關次數: 點閱:86下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文依據修正Good-Cowin理論,發展出一套乾燥顆粒物質的本構方程,其中使用熱力分析 (Müller-Liu entropy principle) 來取得平衡態的本構表示式,非平衡態的部分則使用準線性理論的假設來獲得。此本構模型被應用在一個由重力所驅使,且傾斜底板會移動的穩態、等溫、不可壓縮的乾燥快速顆粒流上,依據數值模擬得到的結果,分析流場中顆粒流行為,並改變一些參數來觀察顆粒流行為的變化;數值結果顯示出,此引入描述動力行為的力平衡方程式的模型,非常接近實驗模擬與實際現象所發生的快速顆粒流行為。

    Based on the Goodman-Cowin theory we construct a constitutive model for dry granular materials. A thermodynamic analysis, based on the Müller-Liu entropy principle, is performed to derive the equilibrium expressions of the constitutive variables, and non-equilibrium responses are proposed by use of a quasi-linear theory. The model is applied to investigate a steady, isothermal, gravity-driven dry granular flow down an inclined moving plane. Numerical simulations are carried out to study the behavior of the flowing granular materials. Numerical results indicate that the predicted behavior is similar to those observed in the laboratory and field observations. The present model shows a good potential to simulate the behavior of rapid dry granular flows.

    摘要.................................I Abstract............................II 誌謝...............................III 圖目錄..............................VI 表目錄.............................VII 符號說明..........................VIII 第一章 簡介..........................1 1.1 顆粒物質.........................1 1.2 顆粒物質的應用...................2 1.3 顆粒物質的特性...................2 1-4 論文架構........................10 第二章 研究方法.....................12 2.1 簡介............................12 2.2 分子動力學......................12 2.3 統計力學........................13 2.4 連體力學........................14 2.5 傳統流體與顆粒物質的比較........17 第三章 理論回顧.....................19 3.1 Goodman-Cowin理論...............19 3.2 修正Goodman-Cowin理論...........20 3.2.1 修正力平衡方程式..............20 3.2.2 修正內能平衡方程式............21 3.3 理論推導........................23 3.4 熱力分析........................25 3.5 熵通量..........................29 3.6 熱力平衡........................31 3.7 非平衡態........................34 3.7.1 自由能........................35 3.7.2 黏性係數......................36 3.7.3 內部摩擦力函數................37 第四章 數值模擬.....................39 4.1 定義問題........................39 4.2 數值方法........................44 4-3 數值結果........................47 第五章 結論與討論...................55 5.1 結論............................55 5.2 未來展望........................56 參考文獻............................57 附錄 Matlab計算程式.................60 簡歷................................64

    [1] Hutter, K.: Order and disorder in granular materials. In:Kinetic and Continuum Theories of Granular and Porous media, 7-29 (1999)

    [2] Wang, Y., Hutter, K.: Granular material theories revisited. In :
    Geomorphological Fluid Mechanics, 79-107 (2001)

    [3] Hutter, K.: Order and disorder in granular materials. In:Kinetic and Continuum Theories of Granular and Porous media, 1-65 (1999)

    [4] 潘國樑:環境地質與防災科技,地景企業股份有限公司 (2005)

    [5] Campbell.: Computer simulation of rapid granular flows. In:Proc. 10th National Congr. (1986)

    [6] Tabor, D.: Gases, Liquids and solids and other states of matter. 3rd ed. Cambridge University press. (1993)

    [7] Goodman, MA., Cowin, SC.: A continuum theory for granular materials. Archive for Rational Mechanics and Analysis. 44, 249-266. (1972)

    [8] Fang, C., Wang, Y., Hutter, K.: A thermo-mechanical continuum theory with internal length for cohesionless granular materials. Part I. A class of constitutive models. Continuum Mechanics and Thermodynamics. 17(8), 545-576 (2006)

    [9] Svendsen, B., Hutter, K., Laloui, L.: Constitutive models for granular materials including quasi-static frictional behaviour: toward a thermodynamic theory of plasticity. Continuum Mechanics and Thermodynamics. 4, 263-275 (1999)

    [10] Liu, I.: Method of Lagrange multipliers for exploitation of entropy principle. Archive for Rational Mechanicsand Analysis. 46, 131-148 (1972)

    [11] Wang, Y., Hutter, K.: Shearing flows in a Goodman-Cowin type granular material-theory and numerical results. Particulate Science and Technology. 17, 97-124 (1999)

    [12] Bagnold, RA.: Experiments on a gravity free dispersion of large solid spheres in a Newtonian fluid under shear. Proceeding of the Royal Society of London, Series A. 225, 49-63 (1954)

    [13] Savage, SB.: Gravity flow of cohesionless granular materials in chutes and channels. Journal of Fluid Mechanics. 92, 53-96 (1979)

    [14] Kirchner, N.: Thermodynamically consistent modeling of abrasive granular materials.I. Non-equilibrium theory. Proceedings of the Royal Society of London, Series A. 458, 2153-2176 (2002)

    [15] Kirchner, N., Teufel , A.: Thermodynamically consistent modeling of abrasive granular materials.II. Thermodynamic equilibrium and applications to steady shear flows. Proceedings of the Royal Society of London, Series A. 458, 3053-3077 (2002)

    [16] Bauer, E., Herle, I.: Stationary states in hypoplasticity. In Constitutive Modelling of Granular Materials. Springer, 167-192 (2000)

    [17] Herle, I., Gudehus, G.: Determination of parameters of a hyproplastic constitutive model from properties of grain assemblies. Mechanics of Cohesive-Frictional Materials Vol. 4, issue 5, 461-485 (1999)

    [18] Fang, C.: A thero-mechanical continuum theory with internal length of cohesionless granular materials. Ph. D. Thesis, Institute of Mechanics, Darmstadt University of Technology. (2005)

    [19] Perng, A.T.H., Capart, H., Chou, H.T.: Granular configurations, motions, and correlations in slow uniform flows driven by an inclined conveyor belt, Gran. Matter 8, 5-17 (2006)

    [20] Pudasaini, S., Hutter, K.: Avalancje Dynamics, Springer Verlag, Berlin Heidelberg. (2007)

    [21] Eringen AC, Kadafar CB.: Polar field theories. In Continuum Physics IV, Eringen AC (ed.). Academic Press: New York. (1976)

    [22] Hutter, K., Wang, Y.: Phenomenological thermodynamics and entropy principle. In: Entropy (Greven, A., Keller, G., Warnecke, G., eds.), 1st ed., Princeton University Press, 57-77 (2003)

    [23] Müller, I.: Thermodynamics. Pitman: London. (1985)

    [24] Wilmanski, K.: Porous Media at Finite Strains. The new model with the balance equation of porosity, Arch. Mech. 48, Nr. 4, 591-628 (1996)

    下載圖示 校內:2009-07-24公開
    校外:2009-07-24公開
    QR CODE