簡易檢索 / 詳目顯示

研究生: 蘇冠艇
Su, Kuan-Ting
論文名稱: 以系統整合技術改善現有無人飛行載具搭載軟體定義無線電之測向與定位方法
Improvement of Direction Finding and Positioning with Unmanned Aerial Vehicle Carrying Software-Defined Radio Receiver by System Integration Technology
指導教授: 陳文字
Chen, Wen-Tzu
學位類別: 碩士
Master
系所名稱: 管理學院 - 電信管理研究所
Institute of Telecommunications Management
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 35
中文關鍵詞: 軟體定義無線電無人飛行載具樹莓派系統整合電波監測測向頻譜
外文關鍵詞: Software-Defined Radio, GNU Radio, Unmanned Aerial Vehicle, Raspberry Pi, System Integration, Spectrum Monitoring
相關次數: 點閱:110下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著近年通訊科技的發達,頻譜的需求大增,更顯得頻譜管理的重要性,頻譜管理可分為規劃、建置以及監測三個方向,頻譜管理達成頻譜資源有效運用,同時藉由規劃無線電頻率,區分不同需求。而頻譜監測的功能在於規劃與建置後能夠有效地維持電波秩序,確保制定的規則能夠被徹底的執行。而本研究選用無人飛行載具的主因在於無人飛行載具能夠跨越地形與建築物障礙,同時,本研究藉由高彈性與開源式的自組式無人飛行載具來提升與軟體定義無線電所架構的偵測模組的相容性,研究中預計利用系統整合技術完善先前無人飛行載具搭載軟體定義無線電技術的監測裝置,並建立一個完整的空中頻譜監測站,解決先前無法在收訊後即時判斷方位、透過將無人機飛行位置資訊與軟體定義無線電裝置所偵測的場強訊號整合至機載電腦樹莓派中進行計算,同時取代人工判斷角度,並將計算結果及時回傳至地面站電腦上,以提高偵測的效率與即時性,以便讓未來在空中頻譜監測的使用者能夠更快、更簡便的得到結果。然而,兩者之連接仍有許多問題尚待解決,本研究利用撰寫Python程式擷取軟體定義無線電裝置與飛行控制板的各項資料進入樹莓派中進行運算,也嘗試使用了兩個不同的軟體定義無線電裝置,並且搭配不同取向的天線:指向天線與定向天線,透過兩種偵測方式,提升偵測模組的數據參考價值,改善過去對於空中頻譜監測的方式,並配合軟體定義無線電的優勢,建置一個容易適合不同地形環境、能夠監測多種不同類型的訊號的空中頻譜監測站。

    The development of communication technology has increased the demand of spectrum and shows the importance of spectrum management. Improving the efficiency of radio frequency and planning the allocation of spectrum resources have become critical issues in spectrum planning. This thesis selects unmanned aerial vehicle (UAV) since it can not only overcome the terrain obstacle but also simultaneously construct an aerial spectrum monitoring system. With open source autopilot controller, the monitoring system can easily communicate with software-defined radio (SDR) receiving module. One of the main purposes of this study is to construct an integrated system consisting of flight control module and software-defined radio receiving module as an aerial spectrum monitoring station. To properly overcome possible challenges of signal operating processes and receiving data calculation, the aerial spectrum monitoring therefore needs highly system integration. Furthermore, this thesis constructs a complete monitoring station including UAV, SDR receiver module, Raspberry Pi, and ground station. To meet the integration requirement, our approach is to simultaneously get the position and azimuth angle of UAV, and received signal power from SDR device. Hence, the controller of UAV, Pixhawk, and the SDR receiver need to send the above information to Raspberry Pi at the same time. In the Raspberry Pi, we develop Python code to perform the above approach. Meanwhile, two antennas and software-defined radio devices are used to detect the direction of radio wave and its signal strength respectively. Finally, we build an aerial spectrum monitor station to measure the position of a radio station.

    目錄 表目錄 ix 圖目錄 x 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 3 1.3 論文架構 4 第二章 背景技術與文獻回顧 6 2.1 無人飛行載具 6 2.1.1 旋翼式無人飛行載具的發展 6 2.2 軟體定義無線電 7 2.2.1 軟體定義無線電的發展 8 2.2.2 軟體定義無線電的架構 8 2.2.3 軟體定義無線電的硬體 8 2.3 無線電測向定位系統 9 2.4 文獻歸納小結 10 第三章 研究方法 12 3.1 研究硬體架構 12 3.1.1 無人飛行載具的組成 14 3.1.2 機載電腦的系統 16 3.2 系統整合方法 16 3.2.1 飛行控制板與樹莓派的整合 17 3.2.2 飛行控制板與軟體定義無線電的整合 17 3.2.3 系統整合 18 3.3 定位方法 19 3.4 研究方式與步驟 20 第四章 研究結果 22 4.1 實驗相關參數 22 4.1.1 發射站與天線規格 22 4.1.2 測向地點 23 4.2 第一次測向結果 24 4.3 第二次測向結果 26 4.4 定位結果 28 4.5 比對先前測向結果 30 4.6 研究結果與探討 30 第五章 研究結果 32 5.1 結論 32 5.2 未來研究建議 32 參考資料 34

    [1] 內政部國土測繪中心,“無人飛行載具系統簡介,” [Online]. Available:
    https://www.nlsc.gov.tw/UAS/2-1_UASintroduce.html.
    [2] J. Mitola, “Software radio architecture,” IEEE Communications Magazine, vol. 33, no. 5, pp. 26–38, 1995.
    [3] 楊政城,“無人飛行載具自動飛行機載電腦平台開發,” 碩士論文,航空太空工程學系碩博士班,國立成功大學,2002.
    [4] Pixhawk.org, “Pixhawk Autopilot Introduction.” 2017. [Online]. Available: https://www.pixhawk.org/modules/pixhawk.
    [5] Dronecode.org, “Sensor Selection.” [Online]. Available: https://docs.px4.io/en/getting_started/sensor_selection.html.
    [6] J. Mitola, "Software radios-survey, critical evaluation and future directions," [Proceedings] NTC-92: National Telesystems Conference, Washington, DC, 1992, pp. 13/15-13/23.
    [7] Ettus Research LLC., “About Ettus Research,” [Online]. Available: https://www.ettus.com/about.
    [8] Dcarr, “Simple Software Radio Peripheral ,” [Online]. Available: http://oscar.dcarr.org/ssrp/.
    [9] 趙冠豪,“以無人飛行載具搭載軟體定義無線電實作測向與定位,” 碩士論文,電信管理研究所,國立成功大學,2017.
    [10] R. Danymol, T. Ajitha and R. Gandhiraj, "Real-time communication system design using RTL-SDR and Raspberry Pi", 2013 International Conference on Advanced Computing and Communication Systems, 2013.
    [11] I. Llamas-Garro, K. Lukin, M. T. de Melo and J. M. Kim, “Frequency and angular estimations of detected microwave source using unmanned aerial vehicles,” 2016 IEEE MTT-S Latin America Microwave Conference (LAMC), Puerto Vallarta, 2016, pp. 1-3.
    [12] W. Chen and C. Ho, “Spectrum monitoring with unmanned aerial vehicle carrying a receiver based on the core technology of cognitive radio – A software-defined radio design,” Journal of Unmanned Vehicle Systems, vol. 5, no. 1, pp. 1-12, 2017.
    [13] 何承勳,“以無人飛行載具搭載軟體定義無線電建置空中頻譜監測站,”碩士論文,電信管理研究所,國立成功大學,2016.
    [14] H. Lim, J. Park, D. Lee and H. J. Kim, “Build Your Own Quadrotor: Open-Source Projects on Unmanned Aerial Vehicles, ” in IEEE Robotics & Automation Magazine, vol. 19, no. 3, pp. 33-45, Sep. 2012.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE