| 研究生: |
彭浩宸 Peng, Hao-Chen |
|---|---|
| 論文名稱: |
考慮滑移及末端效應的微管流 Slip Flow in Microchannel-Consideration of End Effect |
| 指導教授: |
李旺龍
Li, Wang-Long |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 微機電系統 、擠壓膜阻尼 、稀薄氣體效應 、末端效應 、切向動量調節 係數 |
| 外文關鍵詞: | MEMS, squeeze film damping, rarefied gas effect, end effect, tangential momentum accommodation coefficient |
| 相關次數: | 點閱:155 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
能量耗散在微機電系統(Micro Electro-Mechanical Systems, MEMS)是一件 重要問題,減少能量耗散可以提升 MEMS 的性能。MEMS 的微結構尺寸很 小,空氣對微結構表面造成的黏滯力相對於體積力來說非常顯著,而有許多 帶有質量塊 MEMS 器件,例如射頻(RF)、加速度計、光學開關、微扭轉鏡、 諧振器等,質量塊在空氣薄膜上運動會產生所謂的擠壓膜阻尼效應,因此減 少擠壓膜阻尼是一個提升 MEMS 性能最直接且有效的方法。 降低擠壓膜阻尼的方法為在質量塊上進行穿孔和對 MEMS 環境抽真空, 由於空氣的平均自由徑與微結構的尺寸相當,會造成流體的不連續性,產生 稀薄氣體效應,且穿孔處氣體的進出產生的末端效應會有能量耗散,另外, 質量塊及下方基板的材料也會因為製程的需求有所不同,空氣對於不同材料 表面會有不同的切向動量調節係數,以上三者皆會影響空氣的流動行為。因 此,本研究主要是在不同切向動量調節係數下,稀薄氣體效應和末端效應對 於穿孔板擠壓膜阻尼力的影響,並針對不同的穿孔形狀進行分析,提出四種 形狀(圓形、正六角形、正方形、正三角形)的穿孔修正分子氣膜潤滑方程式, 顯示在相同的穿孔面積下,圓形設計的穿孔板,所受到的阻尼力最小。
Energy dissipation is an important problem in Micro electro-mechanical Systems(MEMS). The dissipation mechanisms include thermoelastic damping, squeeze film damping, anchoring loss, etc. The main damping source is squeeze film damping(SFD). The method to reduce SFD is to manufacture perforated proof mass and evacuate air from the environment. Therefore, this study mainly focuses on the influence of rarefied gas effect and end effect on the flow rate with different tangential momentum accommodation coefficients. Based on the analysis of short pipe flow with different perforation shapes, the end correction lengths of four shapes with different tangential momentum accommodation coefficients are fitted, considering the rarefied gas effect and end effect.Four kinds of perforated modified molecular film lubrication equations (circle, hexagon, square and triangle) are proposed to analyze the damping coefficient of perforated plates. The results show that low tangential momentum accommodation coefficient of perforated plates and circular perforations cause small damping coefficient for perforated MEMS device
[1] Feynman, R. P. (1992),“There's plenty of room at the bottom,” Journal of microelectromechanical systems, 1(1), 60-66.
[2] Petersen, K. E. (1982),“Silicon as a mechanical material,” Proceedings of the IEEE, 70(5), 420-457.
[3] Fan, L. S., Tai, Y. C., & Muller, R. S. (1988), “IC-processed electrostatic micro-motors,” International Electron Devices Meeting, pp. 666-669.
[4] Frazier, A. B., Ahn, C. H., & Allen, M. G. (1994), “Development of micromachined devices using polyimide-based processes,” Sensors and Actuators A: Physical, 45(1), 47-55.
[5] Galambos, P., & Benavides, G. L. (2000), “Electrical and fluidic packaging of surface micromachined electromicrofluidic devices,” Microfluidic Devices and Systems III, Vol. 4177, pp. 186-193.
[6] Starr, J. B. (1990), “Squeeze-film damping in solid-state accelerometers,” IEEE 4th Technical Digest on Solid-State Sensor and Actuator Workshop, pp. 44-47.
[7] Sadd, M. H., & Stiffler, A. K. (1975), “Squeeze film dampers: amplitude effects at low squeeze numbers,” Journal of Engineering for Industry, 97(4), 1366-1370.
[8] Wei, W., & Sheng, H. (2009), “Development of MEMS inertial instrument technology,” Missiles and Space Vehicles, 3, 23-28.
[9] Seidel, H. E. L. M. U. T., Riedel, H., Kolbeck, R., Mück, G., Kupke, W., & Königer, M. (1990), “Capacitive silicon accelerometer with highly symmetrical design,” Sensors and Actuators A: Physical, 21(1-3), 312-315.
[10] Rogner, A., Eicher, J., Munchmeyer, D., Peters, R. P., & Mohr, J. (1992), “The LIGA technique-what are the new opportunities,” Journal of Micromechanics and Microengineering, 2(3), 133.
[11] Selvakumar, A., & Najafi, K. (1998), “A high-sensitivity z-axis capacitive silicon microaccelerometer with a torsional suspension,” Journal of microelectromechanical systems, 7(2), 192-200.
[12] Amarasinghe, R., Dao, D. V., Toriyama, T., & Sugiyama, S. (2004), “A silicon micromachined six-degree of freedom piezoresistive accelerometer,” SENSORS 2004 IEEE, pp. 852-855.
[13] Sun, C. M., Tsai, M. H., Liu, Y. C., & Fang, W. (2010), “Implementation of a monolithic single proof-mass tri-axis accelerometer using CMOS-MEMS technique,” IEEE Transactions on Electron devices, 57(7), 1670-1679.
[14] Tez, S., Aykutlu, U., Torunbalci, M. M., & Akin, T. (2015), “A bulk-micromachined three-axis capacitive MEMS accelerometer on a single die,” Journal of Microelectromechanical Systems, 24(5), 1264-1274.
[15] Zhang, H., Wei, X., Ding, Y., Jiang, Z., & Ren, J. (2019), “A low noise capacitive MEMS accelerometer with anti-spring structure,” Sensors and Actuators A: Physical, 296, 79-86.
[16] Tsien, H. S. (1946), “Superaerodynamics, mechanics of rarefied gases,” Journal of the Aeronautical Sciences, 13(12), 653-664.
[17] Ho, C. M., & Tai, Y. C. (1996), “REVIEW: MEMS and its applications for flow control,” Journal of Fluids Engineering, vol. 118, 437-447.
[18] Gad-El-Hak, M. (2006), “Gas and liquid transport at the microscale,” Heat Transfer Engineering, 27(4), 13-29.
[19] Fukui, S., & Kaneko, R. (1987), “Analysis of ultra-thin gas film lubrication based on the linearized Boltzmann equation: Influence of accommodation coefficient,” JSME international journal, 30(268), 1660-1666.
[20] Fukui, S., & Kaneko, R. (1988), “Analysis of ultra-thin gas film lubrication based on linearized Boltzmann equation: first report—derivation of a generalized lubrication equation including thermal creep flow,” Journal of Tribology, 110, 253-261.
[21] Li, W. L. (1999), “Analytical modelling of ultra-thin gas squeeze film,” Nanotechnology, 10(4), 440.
[22] Veijola, T., Kuisma, H., & Lahdenpera, J. (1997), “Model for gas film damping in a silicon accelerometer,” Proceedings of International Solid State Sensors and Actuators Conference (Transducers' 97), Vol. 2 IEEE, pp. 1097-1100.
[23] Kolobov, V. I., Arslanbekov, R. R., Aristov, V. V., Frolova, A. A., & Zabelok, S. A. (2007), “Unified solver for rarefied and continuum flows with adaptive mesh and algorithm refinement,” Journal of Computational Physics, 223(2), 589-608.
[24] Filbet, F., & Jin, S. (2010), “A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources,” Journal of Computational Physics, 229(20), 7625-7648.
[25] Pieraccini, S., & Puppo, G. (2007), “Implicit–explicit schemes for BGK kinetic equations,” Journal of Scientific Computing, 32(1), 1-28.
[26] Li, Z. H., & Zhang, H. X. (2003), “Numerical investigation from rarefied flow to continuum by solving the Boltzmann model equation,” International Journal for Numerical Methods in Fluids, 42(4), 361-382.
[27] Bird, G. A. (1976), “Molecular gas dynamics,” NASA STI/Recon Technical Report A, 76, 40225.
[28] Cao, B. Y., Chen, M., & Guo, Z. Y. (2006), “Effect of surface roughness on gas flow in microchannels by molecular dynamics simulation,” International Journal of Engineering Science, 44(13-14), 927-937.
[29] Bhatnagar, P. L., Gross, E. P., & Krook, M. (1954), “A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems,” Physical review, 94(3), 511.
[30] Li, W. L. (2002), “A database for Couette flow rate considering the effects of non-symmetric molecular interaction,” Journal of Tribology, 124(4), 869-873.
[31] Li, W. L. (2003), “A database for interpolation of Poiseuille flow rate for arbitrary Knudsen number lubrication problems,” Journal of the Chinese Institute of Engineers, 26(4), 455-466.
[32] Kim, E. S., Cho, Y. H., & Kim, M. U. (1999), “Effect of holes and edges on the squeeze film damping of perforated micromechanical structures,” Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems, Cat. No. 99CH36291, pp. 296-301.
[33] Bao, M., Yang, H., Sun, Y., & French, P. J. (2003), “Modified Reynolds' equation and analytical analysis of squeeze-film air damping of perforated structures,” Journal of Micromechanics and Microengineering, 13(6), 795.
[34] Veijola, T. (2006), “Analytic damping model for an MEM perforation cell,” Microfluidics and Nanofluidics, 2(3), 249-260.
[35] Pandey, A. K., Pratap, R., & Chau, F. S. (2007), “Analytical solution of the modified Reynolds equation for squeeze film damping in perforated MEMS structures,” Sensors and Actuators A: Physical, 135(2), 839-848.
[36] Mohite, S. S., Sonti, V. R., & Pratap, R. (2008), “A compact squeeze-film model including inertia, compressibility, and rarefaction effects for perforated 3-D MEMS structures,” Journal of Microelectromechanical systems, 17(3), 709-723.
[37] Li, P., & Hu, R. (2011), “A model for squeeze-film damping of perforated MEMS devices in the free molecular regime,” Journal of Micromechanics and Microengineering, 21(2), 025006.
[38] Li, P., Fang, Y., & Wu, H. (2014), “A numerical molecular dynamics approach for squeeze-film damping of perforated MEMS structures in the free molecular regime,” Microfluidics and nanofluidics, 17(4), 759-772.
[39] Lu, C., Li, P., & Fang, Y. (2019), “Analytical model of squeeze film air damping of perforated plates in the free molecular regim,” Microsystem Technologies, 25(5), 1753-1761.
[40] Sumali, H. (2007), “Squeeze-film damping in the free molecular regime: model validation and measurement on a MEMS,” Journal of Micromechanics and Microengineering, 17(11), 2231.
[41] Kaczynski, J., Ranacher, C., & Fleury, C. (2020), “Computationally efficient model for viscous damping in perforated MEMS structures,” Sensors and Actuators A: Physical, 314, 112201.
[42] Cercignani, C., & Sernagiotto, F. (1966), “Cylindrical Poiseuille flow of a rarefied gas,” The Physics of Fluids, 9(1), 40-44.
[43] Sharipov, F. (2003), “Application of the Cercignani–Lampis scattering kernel to calculations of rarefied gas flows. III. Poiseuille flow and thermal creep through a long tube,” European Journal of Mechanics-B/Fluids, 22(2), 145-154.
[44] Varoutis, S., Naris, S., Hauer, V., Day, C., & Valougeorgis, D. (2009), “Computational and experimental study of gas flows through long channels of various cross sections in the whole range of the Knudsen number,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 27(1), 89-100.
[45] Titarev, V. A., & Shakhov, E. M. (2010), “Nonisothermal gas flow in a long channel analyzed on the basis of the kinetic S-model,” Computational Mathematics and Mathematical Physics, 50(12), 2131-2144.
[46] Pfahler, J. (1991), “Gas and Liquid Flow in small Channels l,” Micromechanical Sensors, Actuators, and Systems,” Vol. 32, pp. 49-60.
[47] Choi, S. B. (1991), “Fluid flow and heat transfer in microtubes,” Micromechanical Sensors, Actuators, and Systems, ASME, 123-134.
[48] Couette M M, (1890), “Etudes sur le frottement des liquides,” Ann. Chim. Phys. 6, série, 21, 433-510.
[49] Sampson, R. A. (1891), “XII. On Stokes’s current function,” Philosophical Transactions of the Royal Society of London.(A.), 182, 449-518.
[50] Weissberg, H. L. (1962), “End correction for slow viscous flow through long tubes,” The Physics of Fluids, 5(9), 1033-1036.
[51] Hanks, R. W., & Weissberg, H. L. (1964), “Slow viscous flow of rarefied gases through short tubes,” Journal of Applied Physics, 35(1), 142-144.
[52] Dagan, Z., Weinbaum, S., & Pfeffer, R. (1982), “An infinite-series solution for the creeping motion through an orifice of finite length,” Journal of Fluid Mechanics, 115, 505-523.
[53] Veijola, T. (2002), “End effects of rare gas flow in short channels and in squeezed-film dampers,” Proceedings Modeling and Simulation of Microsystems, 104-107.
[54] Sharipov, F., & Seleznev, V. (1998), “Data on internal rarefied gas flows,” Journal of Physical and Chemical Reference Data, 27(3), 657-706.
[55] Pantazis, S., & Valougeorgis, D. (2013), “Rarefied gas flow through a cylindrical tube due to a small pressure difference,” European Journal of Mechanics-B/Fluids, 38, 114-127.
[56] Pantazis, S., Valougeorgis, D., & Sharipov, F. (2014), “End corrections for rarefied gas flows through circular tubes of finite length,” Vacuum, 101, 306-312.
[57] Ng, C. O., & Xie, W. (2018) , “End loss for Stokes flow through a slippery circular pore in a barrier of finite thickness,” Physics of Fluids, 30(10), 103604.
[58] Gan, Z., Huang, D., Wang, X., Lin, D., & Liu, S. (2009), “Getter free vacuum packaging for MEMS,” Sensors and Actuators A: Physical, 149(1), 159-164.
[59] Rabinovich, V. L., Gupta, R. K., & Senturia, S. D. (1997), “The effect of release-etch holes on the electromechanical behaviour of MEMS structures,” Proceedings of International Solid State Sensors and Actuators Conference (Transducers' 97), Vol. 2, pp. 1125-1128.
[60] Rebeiz, G. M. (2004),RF MEMS: theory, design, and technology. John Wiley & Sons.
[61] Knudsen, M. (1909), “Die Gesetze der Molekularströmung und der inneren Reibungsströmung der Gase durch Röhren,” Annalen der Physik, 333(1), 75-130.
[62] Boltzmann, L.(1872), “Weitere studien uber das warmegleichgewicht unter gasmolekulen,” Wiener Berichte, 66,275-370.
[63] Maxwell, J. C. (1879), “On stresses in rarefied gases arising from temperature inequalities,” Philosophical transactions of the royal society of London, 170, 231-256.
[64] Sazhin, O. V., Borisov, S. F., & Sharipov, F. (2001), “Accommodation coefficient of tangential momentum on atomically clean and contaminated surfaces,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 19(5), 2499-2503.
[65] Schaaf, S. A., & Sherman, F. S. (1954), “Skin friction in slip flow,” Journal of the Aeronautical Sciences, 21(2), 85-90.
[66] Kanki, T., & Iuchi, S. (1973), “Poiseuille flow and thermal creep of a rarefied gas between parallel plates,” The Physics of Fluids, 16(5), 594-599.
[67] Loyalka, S. K. (1974), “Comments on “Poiseuille flow and thermal creep of a rarefied gas between parallel plates,” The Physics of Fluids, 17(5), 1053-1055.
[68] Arkilic, E. B. (1994), “Gaseous Flow in Micro-channels, Application of Microfabrication to Fluid Mechanics,” ASME, FED, 197, 57-66.
[69] Burgdorfer, A. (1958), “The Influence of the Molecular Mean Free Path on the Performance of Hydrodynamic Gas Lubricated Bearing,” Interim Report, No. AECU-3771; I-A2049-2.
[70] Hsia, Y. T., & Domoto, G. A. (1983), “An experimental investigation of molecular rarefaction effects in gas lubricated bearings at ultra-low clearances,” Journal of lubrication technology, 105(1),120-129.
[71] Mitsuya, Y. (1993), “Modified Reynolds equation for ultra-thin film gas lubrication using 1.5-order slip-flow model and considering surface accommodation coefficient,” Journal of Tribology, 289-294.
[72] Weng, C. I., Li, W. L., & Hwang, C. C. (1999), “Gaseous flow in microtubes at arbitrary Knudsen numbers,” Nanotechnology, 10(4), 373.
[73] Aminpour, M., Torres, S. A. G., Scheuermann, A., & Li, L. (2021), “Slip-Flow Regimes in Nanofluidics: A Universal Superexponential Model,” Physical Review Applied, 15(5), 054051.
[74] Bruus, H. (2007), Theoretical microfluidics, Vol. 18, Oxford university press.
[75] Ebert, W. A., & Sparrow, E. M. (1965), “Slip flow in rectangular and annular ducts,” Journal of Basic Engineering, 87(4), 1018-1024
[76] Yovanovich, M. M., & Khan, W. A. (2020), “Slip Flow Models for Gas Flows in Rectangular, Trapezoidal, and Hexagonal Microchannel,” AIAA Journal, 58(5), 2147-2155.
[77] Marin, O., Vinuesa, R., Obabko, A. V., & Schlatter, P. (2016), “Characterization of the secondary flow in hexagonal ducts,” Physics of Fluids, 28(12), 125101.
[78] Yovanovich, M. M., & Khan, W. A. (2015), “Friction and Heat Transfer in Liquid and Gas Flows in Micro-and Nanochannel,” Advances in Heat Transfer, Vol. 47 Elsevier, pp. 203-307.
[79] Elwenspoek, M., Wiegerink, R., & Wiegerink, R. J. (2001),Mechanical microsensors, Springer Science & Business Media.
[80] Shabana, A. A., & Ling, F. F. (1997),Vibration of discrete and continuous systems, New York: Springer.
[81] Cheng, J., Yang, X., Liu, X., Liu, T., & Luo, H. (2016), “A direct discontinuous Galerkin method for the compressible Navier–Stokes equations on arbitrary grids,” Journal of Computational Physics, 327, 484-502.
[82] Levenberg, K. (1944), “A method for the solution of certain non-linear problems in least squares,” Quarterly of applied mathematics, 2(2), 164-168.
[83] Marquardt, D. W. (1963), “An algorithm for least-squares estimation of nonlinear parameters,” Journal of the society for Industrial and Applied Mathematics, 11(2), 431-441.
[84] De Pasquale, G., Veijola, T., & Somà, A. (2009), “Modelling and validation of air damping in perforated gold and silicon MEMS plates,” Journal of Micromechanics and Microengineering, 20(1), 015010.
校內:2027-08-23公開