| 研究生: |
許鎮安 Hsu, Chen-An |
|---|---|
| 論文名稱: |
以快速凝固霧化法與粉末冶金製作Mg-Cu-Gd金屬玻璃塊材及其性質探討 Study of the Processing and Mechanical Properties of the Mg-Cu-Gd Bulk Metallic Glass Synthesized by Rapid-Solidifying Atomization and consolidated by Powder Metallurgy |
| 指導教授: |
曹紀元
Tsao, Chi-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 143 |
| 中文關鍵詞: | 噴覆成型 、鎂基 、玻璃金屬粉末 、非晶質 、結晶活化能 |
| 外文關鍵詞: | Spray forming, Mg-based, metallic glasses powder, amorphous, activation energy |
| 相關次數: | 點閱:108 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇研究使用具有快速冷卻效果的氣體霧化法製程來製備Mg-Cu-Gd玻璃金屬粉末。基於希望製備出來的粉末不受腔體其他材料之汙染,故另外設計一容器用於蒐集粉末並在其中灌入液態氮,以達非晶質所需的冷卻速率,由於有許多困難需要克服,此部分佔本研究目前大部分時間,目前將噴覆出來的粉末成功蒐集率達63%。所噴覆出的Mg-Cu-Gd玻璃金屬粉末粒徑主要約在40~60 μm。利用X光繞射分析(XRD)來檢測所噴覆出的材料之結構,並確定為非晶質材料。熱差式掃描分析(DSC)檢測此材料之上下區的玻璃轉換溫度及結晶溫度,而等溫熱差式掃描分析用來決定此材料在不同持溫溫度的潛伏時間,並計算其結晶活化能。此塊狀玻璃金屬的玻璃形成能力由Trg及γ等參數來做比較。Nano-TA則使用來進一步印證熱差式掃描分析(DSC)之結果,並觀察粉末表面在吸熱,結晶後之變化。掃描式(SEM)顯微鏡以及其附屬EDS觀察其微結構及化學組成,其組成為Mg66.2Cu24.3Gd9.5。在不同位置的微硬度由維氏硬度試驗檢測並同時檢測。
將得到的Mg66.2Cu24.3Gd9.5金屬玻璃粉末做熱壓成型,再接著進行擠型。探討其受到壓力及不同擠型比時材料內部的改變,並將擠型出來的材料進行室溫壓縮測試,得到其壓縮強度。
The Mg-Cu-Gd metallic glass powders was synthesized by the RSA (Rapid-Solidifying Atomization), a rapid solidification process. A container is designed for keep the powders pure form other materials in chamber, liquid nitrogen is injected into the container for reach the cooling rate to get amorphous structure, this part occupy the most time so far because of many problems to conquer, the best collection of powders now is 63%. The average size of spray-formed Mg-Cu-Gd metallic glass powder is 40~60 μm. The degree of crystallization and structure was determined by X-Ray Diffraction analyses, which shows amorphous structure. Differential Scanning Calorimeter analyses were performed to establish the glass transition and crystallization temperatures of the spray-formed Mg-Cu-Gd metallic glass powders. Isothermal DSC was also performed to determine the incubation times at various temperatures and its activation energy. The GFA (Glass Forming Ability) was determined with various glass forming criteria such as Trg and γ. Micro-TA is used to proof the correct of DSC and observe the surface of powders after the heating and crystallization. Microstructures and chemical compositions were characterized and analyzed by SEM and EDS, which has composition of Mg66.2Cu24.3Gd9.5. MHV hardnesses at different locations were measured by micro-Vickers hardness tester.
The Mg66.2Cu24.3Gd9.5 metallic glass powders were hot pressed to consolidate, the extrusion with extrusion ratio 9 and 36 were followed. To discuss the influence of pressure and extrusion ratio. And compression test at room temperature were tested to get compressive strength.
1. Inoue, Akihisa, Tao Zhang, and Tsuyoshi Masumoto, Zr-Al-Ni Amorphous Alloys with High Glass Transition Temperature and Significant Supercooled Liquid Region. Materials Transactions, JIM, 1990. 31(3): p. 177-183.
2. Spaepen, Frans, A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metallurgica, 1977. 25(4): p. 407-415.
3. Chang, Y. C., T. H. Hung, H. M. Chen, J. C. Huang, T. G. Nieh, and C. J. Lee, Viscous flow behavior and thermal properties of bulk amorphous Mg58Cu31Y11 alloy. Intermetallics, 2007. 15(10): p. 1303-1308.
4. Wang, W. H., C. Dong, and C. H. Shek, Bulk metallic glasses. Materials Science and Engineering: R: Reports, 2004. 44(2-3): p. 45-89.
5. Ashby, M. F. and A. L. Greer, Metallic glasses as structural materials. Scripta Materialia, 2006. 54(3): p. 321-326.
6. Zheng, Qiang, Jian Xu, and Evan Ma, High glass-forming ability correlated with fragility of Mg--Cu(Ag)--Gd alloys. Journal of Applied Physics, 2007. 102(11): p. 113519-5.
7. Xu, Ying-Kun, Han Ma, Jian Xu, and En Ma, Mg-based bulk metallic glass composites with plasticity and gigapascal strength. Acta Materialia, 2005. 53(6): p. 1857-1866.
8. 陳海明, 鎂銅銀釓塊狀非晶質合金之玻璃形成能力及機械性質. 2006國立中山大學材料科學研究所碩士論文.
9. Chen, H. S., Thermodynamic considerations on the formation and stability of metallic glasses. Acta Metallurgica, 1974. 22(12): p. 1505-1511.
10. Inoue., A., A. Kato., T. Zhang., S. G. Kim., and T. Masumoto., Mg-Cu-Y amorphous alloys with high mechanical strengths produced by a metallic mold casting method. Materials Transactions, JIM, 1991. 32(7): p. 609-616.
11. Xi, X. K., D. Q. Zhao, M. X. Pan, and W. H. Wang, On the criteria of bulk metallic glass formation in MgCu-based alloys. Intermetallics, 2005. 13(6): p. 638-641.
12. Yuan, Guangyin and Akihisa Inoue, The effect of Ni substitution on the glass-forming ability and mechanical properties of Mg-Cu-Gd metallic glass alloys. Journal of Alloys and Compounds, 2005. 387(1-2): p. 134-138.
13. Chang, L. J., J. S. C. Jang, B. C. Yang, and J. C. Huang, Crystallization and thermal stability of the Mg65Cu25-xGd10Agx (x??-10) amorphous alloys. Journal of Alloys and Compounds, 2007. 434-435: p. 221-224.
14. Soubeyroux, J. L., S. Puech, P. Donnadieu, and J. J. Blandin, Synthesis and mechanical behavior of nanocomposite Mg-based bulk metallic glasses. Journal of Alloys and Compounds, 2007. 434-435: p. 84-87.
15. Zheng, Q., S. Cheng, J. H. Strader, E. Ma, and J. Xu, Critical size and strength of the best bulk metallic glass former in the Mg-Cu-Gd ternary system. Scripta Materialia, 2007. 56(2): p. 161-164.
16. Akihisa Inoue, Tao Zhang, and Tsuyoshi Masumoto, Al-La-Ni Amorphous Alloys with a Wide Supercooled Liquid Region Materials Transactions, JIM, 1989. 30(12): p. 965-972.
17. Lee, S. Y., T. S. Kim, J. K. Lee, H. J. Kim, D. H. Kim, and J. C. Bae, Effect of powder size on the consolidation of gas atomized Cu54Ni6Zr22Ti18 amorphous powders. Intermetallics. 14(8-9): p. 1000-1004.
18. Hufnagel, T. C., T. Jiao, Y. Li, L.-Q. Xing, and K. T. Ramesh, Deformation and failure of Zr57Ti5Cu20Ni8Al10 bulk metallic glass under quasi-static and dynamic compression. Materials Research Society, 2002. 17(6).
19. Keryvin, V., V. H. Hoang, and J. Shen, Hardness, toughness, brittleness and cracking systems in an iron-based bulk metallic glass by indentation. Intermetallics, 2009. 17(4): p. 211-217.
20. Huang, Y. J., J. Shen, Y. L. Chiu, J. J. J. Chen, and J. F. Sun, Indentation creep of an Fe-based bulk metallic glass. Intermetallics, 2009. 17(4): p. 190-194.
21. Akihisa Inoue, Nobuyuki Nishiyama, and Takayuki Matsuda, Preparation of Bulk Glassy Pd40Ni10Cu30P20 Alloy of 40 mm in Diameter by Water Quenching. Materials Transactions, JIM, 1996. 37(2): p. 181-184.
22. Men, H., W. T. Kim, and D. H. Kim, Glass formation and crystallization behavior in Mg65Cu25Y10-xGdx (x=0, 5 and 10) alloys. Journal of Non-Crystalline Solids, 2004. 337(1): p. 29-35.
23. 吳學陞, 工業材料, 1999. 149: p. 154-165.
24. Lu, Z. P. and C. T. Liu, A new glass-forming ability criterion for bulk metallic glasses. Acta Materialia, 2002. 50(13): p. 3501-3512.
25. Du, X. H., J. C. Huang, C. T. Liu, and Z. P. Lu, New criterion of glass forming ability for bulk metallic glasses. Journal of Applied Physics, 2007. 101(8): p. 086108.
26. Tanaka, Hajime, Relationship among glass-forming ability, fragility, and short-range bond ordering of liquids. Journal of Non-Crystalline Solids, 2005. 351(8-9): p. 678-690.
27. Ted Guo, M. L., Chi Y. A. Tsao, J. C. Huang, and J. S. C. Jang, Crystallization behavior of spray-formed and melt-spun Al89La6Ni5 hybrid composites with amorphous and nanostructured phases. Materials Science and Engineering: A, 2005. 404(1-2): p. 49-56.
28. Matusita, Kazumasa and Sumio Sakka, Kinetic study of crystallization of glass by differential thermal analysis--criterion on application of Kissinger plot. Journal of Non-Crystalline Solids, 1980. 38-39(Part 2): p. 741-746.
29. Kissinger, H.E., Reaction kinetics in differential thermal analysis. Analytical Chemistry, 1957. 29: p. 1702-1706.
30. Inoue, Akihisa, Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Materialia, 2000. 48(1): p. 279-306.
31. Prasad, Y., H. Gegel, S. Doraivelu, J. Malas, J. Morgan, K. Lark, and D. Barker, Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242. Metallurgical and Materials Transactions A, 1984. 15(10): p. 1883-1892.
32. Schuh, C. A. and A. C. Lund, Atomistic basis for the plastic yield criterion of metallic glass. Nature Materials, 2003. 2(7): p. 449-452.
33. Hajlaoui, K., A. R. Yavari, B. Doisneau, A. LeMoulec, W. J. Botta F, G. Vaughan, A. L. Greer, A. Inoue, W. Zhang, and A. Kvick, Shear delocalization and crack blunting of a metallic glass containing nanoparticles: In situ deformation in TEM analysis. Scripta Materialia, 2006. 54(11): p. 1829-1834.
34. Chen, F. H., K. F. Chang, Chi Y. A. Tsao, M. L. T. Guo, J. C. Huang, and J. S. C. Jang, Microstructures and mechanical behaviors of Mg58Cu31Gd11 and Mg65Cu25Gd10 amorphous alloys synthesized by injection casting and melt spinning. Journal of Alloys and Compounds, 2009. 483(1-2): p. 32-36.
35. Hsieh, P. J., S. C. Lin, H. C. Su, and J. S. C. Jang, Glass forming ability and mechanical properties characterization on Mg58Cu31Y11-xGdx bulk metallic glasses. Journal of Alloys and Compounds, 2009. 483(1-2): p. 40-43.
36. Lee, Kwang Seok, Jung-Hwan Lee, and Jgen Eckert, On the structural relaxation of bulk metallic glass under warm deformation. Intermetallics, 2009. 17(4): p. 222-226.
37. C. A. Angell, Formation of Glasses from Liquids and Biopolymers. Science, 1995. P1924
38. K. Zhao, X. X. Xia, H. Y. Bai, D. Q. Zhao, and W. H. Wang, Room temperature homogeneous flow in a bulk metallic glass with low glass transition temperature. APPLIED PHYSICS LETTERS 98, 2011.