| 研究生: |
陳盈圓 Chen, Ying-Yuan |
|---|---|
| 論文名稱: |
結合長碳鏈四級銨與再生性鹵胺類修飾於聚酯纖維之表面特性分析及抗菌性評估 Polyester fibers modified with rechargeable N-halamine and long alkyl chain terminated with quaternary ammonium: surface characterization and antimicrobial effect evaluation. |
| 指導教授: |
林睿哲
Lin, Jui-Che |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 抗菌劑 、抗菌纖維 、鹵胺 、再生性 、交聯劑 、長碳鏈四級銨鹽 |
| 外文關鍵詞: | N-halamine, polyester fiber, rechargeability, polycarboxylic acids, starch |
| 相關次數: | 點閱:68 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
新型抗菌劑-鹵胺類抗菌劑不只具備以往抗菌劑優點,廣譜的抗菌能力,還有低毒性、高穩定性及最重要的再生的特性,能大幅降低一次性抗菌醫材使用的浪費,使其成為近年來研究學者致力於研究的新抗菌材料,故本論文以鹵胺類抗菌劑作為主軸,結合其他特性並且在PET聚酯纖維進行表面改質,開發出再生性抗菌纖維。
本實驗將PET聚脂纖維用澱粉與交聯劑在纖維表面上形成一層高分子膜,作為抗菌表面改質的反應性官能基,並且合成具有長碳鏈四級胺鹽的再生性鹵胺類抗菌劑,利用交聯劑將其接枝在纖維上,而合成之抗菌劑由NMR鑑定其結構,表面改質後的PET聚脂纖維由XPS鑑定表面化學結構,改質基材所使用的是不織布纖維,將參考AATCC Test Method 39的濕潤性測試評估其親疏水性,漂白水氯化後的樣品由碘量法標定氯含量,再由清潔劑、海砂、磁石攪拌清洗樣品後再氯化評估再生性,最後抗菌測試參考修改AATCC Test Method 100之三明治法評估對格蘭氏陽性菌(S. aureus)與格蘭氏陰性菌(E. coli)之抗菌性,
實驗結果顯示只有不含碳鏈的樣品有較高耐久性與氯含量,耐久性測試也是高於含碳鏈之樣品,氯化後對於格蘭氏陽性菌(S. aureus)與格蘭氏陰性菌(E. coli)接觸時間10分鐘就能達到90%以上之抗菌率,再生後之抗菌率也保持在90%左右,呈現出再生性鹵胺類高效抗菌能力,但結合長碳鏈部分仍有待改進,抗菌劑合成設計需做改良,不過以澱粉作為增加反應性官能基的纖維基材前處理卻是可行的,水洗後連接抗菌劑小分子酯類鍵結水解,濕潤性測試結果顯示改質後PET聚酯纖維樣品卻變為非常親水,可見澱粉與BTCA仍穩固鍵結在纖維基材表面。
Extensive works on N-halamine antimicrobial agents has been reported over the past few decades because of their advantages containing long-term stabilities, low toxicities to humans, biocidal activity against a broad spectrum of microorganisms, and rechargeable properties upon exposure to household bleach. Thus, the objective of this study is to combine polyester fibers with N-halamine to develop rechargeable antimicrobial fibers.
In this work, N-halamine compounds terminated with long alkyl chain and quaternary ammonium were synthesized and coated onto starch-treated polyester fibers using polycarboxylic acids as crosslinking agents. The chemical structure of synthesized compounds and surface characterization of modified polyester fibers were analyzed by NMR and XPS respectively. Wettability and antimicrobial efficacy were measured through AATCC Test Method.
Though the formation of ester bonds between polycarboxylic acids and antimicrobial agents hydrolyzed after washing cycles, the functional treatment based on starch and polycarboxylic acids was still stable on the PET fibers which resulted in good wettability . The modified polyester fibers without long alkyl chain was more durable and exhibited antimicrobial activity with inactivation about 90% of S. aureus and E. coli within ten minutes of contact time, even after five washing cycles. However, the ones with long alkyl chain were either non-wettable or had poor antimicrobial efficacy. Thus, there still was a need to improve the design of N-halamine compounds terminated with long alkyl chain.
[1] Li L, Pu T, Zhanel G, Zhao N, Ens W, Liu S. New biocide with both N-chloramine and quaternary ammonium moieties exerts enhanced bactericidal activity. Advanced healthcare materials. 2012;1:609-20.
[2] Buffet-Bataillon S, Tattevin P, Bonnaure-Mallet M, Jolivet-Gougeon A. Emergence of resistance to antibacterial agents: the role of quaternary ammonium compounds--a critical review. Int J Antimicrob Agents. 2012;39:381-9.
[3] Ning C, Li L, Logsetty S, Ghanbar S, Guo M, Ens W, et al. Enhanced antibacterial activity of new “composite” biocides with both N-chloramine and quaternary ammonium moieties. RSC Adv. 2015;5:93877-87.
[4] P. Gilbert, Al-taae A. Antimicrobial activity of some alkyltrimethylammonium
bromides. Letters in Applied Microbiology. 1985;1:101-4.
[5] French GL, Otter JA, Shannon KP, Adams NM, Watling D, Parks MJ. Tackling contamination of the hospital environment by methicillin-resistant Staphylococcus aureus (MRSA): a comparison between conventional terminal cleaning and hydrogen peroxide vapour decontamination. J Hosp Infect. 2004;57:31-7.
[6] Page K, Wilson M, Parkin IP. Antimicrobial surfaces and their potential in reducing the role of the inanimate environment in the incidence of hospital-acquired infections. Journal of Materials Chemistry. 2009;19:3819.
[7] Yuan G, Cranston R. Recent Advances in Antimicrobial Treatments of Textiles. Textile Research Journal. 2008;78:60-72.
[8] Elsner P. Antimicrobials and the Skin Physiological and Pathological Flora. In: Hipler UC, Elsner, P, editor. Biofunctional Textiles and the Skin. Basel: Karger; 2006.
[9] Wei Chen TJM. Chemical Surface Modification of Poly(ethylene terephthalate). Macromolecules. 1998;31:3648-55.
[10] B. MartelM M, D. RuffinL. Ducoroy, M. Weltrowski. Finishing of Polyester Fabrics with Cyclodextrins and Polycarboxylic Acids as Crosslinking Agents. Journal of inclusion phenomena and macrocyclic chemistry. 2002;44:443-6.
[11] Ducoroy L, Martel B, Bacquet B, Morcellet M. Ion exchange textiles from the finishing of PET fabrics with cyclodextrins and citric acid for the sorption of metallic cations in water. Journal of Inclusion Phenomena and Macrocyclic Chemistry. 2007;57:271-7.
[12] B. MARTEL MM, D. RUFFIN ,F.VINET, M.WELTROWSKI. Capture and Controlled Release of Fragrances by CD Finished Textiles. Journal of Inclusion Phenomena andMacrocyclic Chemistry. 2002;44:439-42.
[13] Bernard Martel, Philippe Le Thuaut, Gregorio Crini, Michel Morcellet, Anna-Maria Naggi, Ulrich Maschke, et al. Grafting of Cyclodextrins onto Polypropylene Nonwoven Fabrics for the Manufacture of Reactive Filters. II. Characterization. Journal of Applied Polymer Science. 2000;78:2166-73.
[14] Montazer M, Jolaei MM. Novel spacer three-dimensional polyester fabric with β -cyclodextrin and butane tetra carboxylic acid. Journal of the Textile Institute. 2010;101:165-72.
[15] Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009;27:76-83.
[16] Marambio-Jones C, Hoek EMV. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. Journal of Nanoparticle Research. 2010;12:1531-51.
[17] Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, et al. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16:2346-53.
[18] Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol. 2007;73:1712-20.
[19] Burd A, Kwok CH, Hung SC, Chan HS, Gu H, Lam WK, et al. A comparative study of the cytotoxicity of silver-based dressings in monolayer cell, tissue explant, and animal models. Wound Repair Regen. 2007;15:94-104.
[20] HADWIGER CRALA. The Fungicidal Effect of Chitosan on Fungi of Varying Cell Wall Composition. Experimental Mycology. 1979;3:285-7.
[21] Hosseinnejad M, Jafari SM. Evaluation of different factors affecting antimicrobial properties of chitosan. Int J Biol Macromol. 2016;85:467-75.
[22] Kong M, Chen XG, Xing K, Park HJ. Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol. 2010;144:51-63.
[23] Gilbert P, Moore LE. Cationic antiseptics: diversity of action under a common epithet. J Appl Microbiol. 2005;99:703-15.
[24] Laura M. McMurry MO, Stuart B. Levy. Triclosan targets lipid synthesis. nature. 1998;394:531-2.
[25] Colin W. Levy AR, Svetlana Sedelnikova, Patrick J. Baker, Antoine R. Stuitje, Antoni R. Slabas, David W. Rice & John B. Rafferty. Molecular basis of triclosan activity. nature. 1999;398:383-4.
[26] Dr. Siamak P. Yazdankhah AAS, E. Arne Høiby, Bjørn-Tore Lunestad, Even Heir, Tor Øystein Fotland, Kristine Naterstad, and Hilde Kruse. Triclosan and Antimicrobial Resistance in Bacteria: An Overview. Microbial Drug Resistance. 2006;12:83-90.
[27] Latch DE, Packer JL, Arnold WA, McNeill K. Photochemical conversion of triclosan to 2,8-dichlorodibenzo-p-dioxin in aqueous solution. Journal of Photochemistry and Photobiology A: Chemistry. 2003;158:63-6.
[28] Louise K. Huang GS. Durable and Oxygen Bleach Rechargeable Antimicrobial Cellulose: Sodium Perborate as an Activating and Recharging Agent. Industrial & Engineering Chemistry Research. 2003;42:5417-22.
[29] Gang Sun LKH. REGENERABLE ANTIMICROBIAL POLYMERS AND FIBERS WITH OXYGEN BLEACHES. United States: The Regents of the University of Callfornla, Oakland, CA(US); 2005.
[30] Akin Akdag SO, Michael L. McKee, and S. D. Worley. The Stabilities of N-Cl Bonds in Biocidal Materials. Journal of Chemical Theory and Computation. 2006.
[31] MAUGER RS, FG. Acid catalysis in the formation of chloroamides from hypochlorous acid. N-chlorination by hypochlorite ions and by acyl hypochlorites. JOURNAL OF THE CHEMICAL SOCIETY. 1946.
[32] Sakic D, Sonjic P, Tandaric T, Vrcek V. Chlorination of N-methylacetamide and amide-containing pharmaceuticals. Quantum-chemical study of the reaction mechanism. The journal of physical chemistry A. 2014;118:2367-76.
[33] Cerkez I, Kocer HB, Worley SD, Broughton RM, Huang TS. N-halamine biocidal coatings via a layer-by-layer assembly technique. Langmuir : the ACS journal of surfaces and colloids. 2011;27:4091-7.
[34] Fan X, Ren X, Huang T-S, Sun Y. Cytocompatible antibacterial fibrous membranes based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and quaternarized N-halamine polymer. RSC Adv. 2016;6:42600-10.
[35] Cerkez I, Kocer HB, Worley SD, Broughton RM, Huang TS. N-halamine copolymers for biocidal coatings. Reactive and Functional Polymers. 2012;72:673-9.
[36] Loof D, Hiller M, Oschkinat H, Koschek K. Quantitative and Qualitative Analysis of Surface Modified Cellulose Utilizing TGA-MS. Materials. 2016;9:415.
[37] Xiaoqin Chen ZL, Weiwei Cao, Chunyan Yong, Xiaodong Xing. Preparation, characterization, and antibacterial activities of quaternarized N-halamine-grafted cellulose fibers. Applied Polymer Science. 2015.
[38] Ma K, Jiang Z, Li L, Liu Y, Ren X, Huang T-S. N-halamine modified polyester fabrics: Preparation and biocidal functions. Fibers and Polymers. 2014;15:2340-4.
[39] Russell AD. Introduction of biocides into clinical practice and the impact on antibiotic-resistant bacteria. Journal of Applied Microbiology Symposium Supplement. 2002;92:121S-35S.
[40] Russell AD. Biocide use and antibiotic resistance: the relevance of laboratory findings to clinical and environmental situations. The Lancet Infectious Diseases. 2003;3:794-803.
[41] Debashish Roy JSK, James T. Guthrie, Sébastien Perrier. Antibacterial Cellulose Fiber via RAFT Surface Graft Polymerization. Biomacromolecules. 2008;9:91-9.
[42] Yang CQ, Wang X, Kang I-S. Ester Crosslinking of Cotton Fabric by Polymeric Carboxylic Acids and Citric Acid. Textile Research Journal. 1997;67:334-42.
[43] Charles Q. Yang YX, and Dengjin Wang. FT-IR Spectroscopy Study of the Polycarboxylic Acids Used for Paper Wet Strength Improvement. Industrial & Engineering Chemistry Research. 1996;35:4037-42.
[44] Peng H, Yang CQ, Wang X, Wang S. The Combination of Itaconic Acid and Sodium Hypophosphite as a New Cross-Linking System for Cotton. Industrial & Engineering Chemistry Research. 2012;51:11301-11.
[45] CHARLES Q Y. Infrared Spectroscopy Studies of the Effects of the Catalyst on the Ester Cross-Linking of Cellulose by Poly (carboxylic acids). Journal of Applied Polymer Science. 1993;50:2047-53.
[46] Awada H, Montplaisir D, Daneault C. Cross-Linking of Papers Based on Thermomechanical Pulp Fibers by Polycarboxylic Acids: Influence on the Wet Breaking Length. Industrial & Engineering Chemistry Research. 2014;53:4312-7.
[47] Lund K, Brelid H. Kinetics of Cross-Linking Softwood Kraft Pulp with 1,2,3,4-Butanetetracarboxylic Acid. Industrial & Engineering Chemistry Research. 2013;52:11502-9.
[48] Tao Ye BW, Jian Liu, Jiangang Chen, Yiqi Yang. Quantitative analysis of citric acid/sodium hypophosphite modified cotton by HPLC and conductometric titration. Carbohydrate Polymers. 2015;121:92-8.
[49] 蔡文城博士. 微生物學: 藝軒圖書出版社; 2002.
[50] Briggs D, Seah MP. Quantification of AES and XPS. In: Briggs D, Seah MP, editors. Practical Surface Analysis1990. p. 201-56.
[51] Ratner BD, Castner DG. Electron Spectroscopy for Chemical Analysis. In: Vickerman JC, Wiely JS, editors. Surface Analysis-The Principal Technique1997. p. 43-98.
[52] Li L, Zhao N, Liu S. Versatile surface biofunctionalization of poly(ethylene terephthalate) by interpenetrating polymerization of a butynyl monomer followed by “Click Chemistry”. Polymer. 2012;53:67-78.
[53] Zhou T, Zhao J. Synthesis and thermotropic liquid crystalline properties of heterogemini surfactants containing a quaternary ammonium and a hydroxyl group. J Colloid Interface Sci. 2009;331:476-83.
[54] Lee J, Broughton RM, Akdag A, Worley SD, Huang TS. Antimicrobial Fibers Created via Polycarboxylic Acid Durable Press Finishing. Textile Research Journal. 2007;77:604-11.
[55] Shin Y, Son K, Yoo DI. Functional finishing by using atmospheric pressure plasma: Grafting of PET nonwoven fabric. Journal of Applied Polymer Science. 2007;103:3655-9.
[56] Shin Y, Yoo DI. Surface characterization of PET nonwoven fabric treated by He/O2 atmospheric pressure plasma. Journal of Applied Polymer Science. 2008;108:785-90.
[57] Salem T, Uhlmann S, Nitschke M, Calvimontes A, Hund R-D, Simon F. Modification of plasma pre-treated PET fabrics with poly-DADMAC and its surface activity towards acid dyes. Progress in Organic Coatings. 2011;72:168-74.
[58] Milošević M, Radoičić M, Šaponjić Z, Nunney T, Marković D, Nedeljković J, et al. In situ generation of Ag nanoparticles on polyester fabrics by photoreduction using TiO2 nanoparticles. J Mater Sc. 2013;48:5447-55.
[59] Liao Y, Wang Y, Feng X, Wang W, Xu F, Zhang L. Antibacterial surfaces through dopamine functionalization and silver nanoparticle immobilization. Materials Chemistry and Physics. 2010;121:534-40.
[60] Wei Xie ZG, Wei-Ping Pan, Doug Hunter, Anant Singh, and Richard Vaia. Thermal Degradation Chemistry of Alkyl Quaternary Ammonium Montmorillonite. Chem Mater. 2001;13:2979-90.
[61] Weisshaar DE, Earl GW, Amolins MW, Mickalowski KL, Norberg JG, Rekken BD, et al. Investigation of the Stability of Quaternary Ammonium Methyl Carbonates. Journal of Surfactants and Detergents. 2011;15:199-205.
[62] Awad WH, Gilman JW, Nyden M, Harris RH, Sutto TE, Callahan J, et al. Thermal degradation studies of alkyl-imidazolium salts and their application in nanocomposites. Thermochimica Acta. 2004;409:3-11.
[63] Sonohara R MN, Ohshima H, Kondo T. Difference in surface properties between Escherichia coli and Staphylococcus aureus as revealed by electrophoretic mobility measurements. Biophysical Chemistry. 1995;55:273-7.
[64] W.William Wilson MMW, Steven C.Holman, Franklin R.Champlin. Status of methods for assessing bacterial cell surface charge properties based on zeta potential measurements. Journal of Microbiological Methods. 2001;43:153-64.
[65] Klodzinska E, Szumski M, Dziubakiewicz E, Hrynkiewicz K, Skwarek E, Janusz W, et al. Effect of zeta potential value on bacterial behavior during electrophoretic separation. Electrophoresis. 2010;31:1590-6.
[66] Dizman B, Elasri MO, Mathias LJ. Synthesis and antibacterial activities of water-soluble methacrylate polymers containing quaternary ammonium compounds. Journal of Polymer Science Part A: Polymer Chemistry. 2006;44:5965-73.
校內:2022-08-31公開