| 研究生: |
陳建廷 Chen, Chien-Ting |
|---|---|
| 論文名稱: |
內模式控制架構下廣義最小變異量控制器之強健設計 Robust Design of Generalized Minimum Variance Controllers in the IMC Structure |
| 指導教授: |
黃世宏
Hwang, Shyh-Hong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 廣義最小變異量控制 、受控自回歸移動平均模型 、強健性 、內模式控制 |
| 外文關鍵詞: | IMC, Robustness, CARMA, GMVC |
| 相關次數: | 點閱:137 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在工業程序中,廣義最小變異量控制(GMVC)能夠減少隨機擾動的影響,使得程序輸出和目標值之間的變異量達到最小。傳統GMVC的設計缺乏一個系統化的方式來滿足被控程序的特定需求,例如設定目標值改變或確定性負載擾動發生時無法保證消除穩態偏移;在追求最小變異量時無法兼顧強健性的問題。
本論文提出內模式控制(IMC)架構下的改良式GMVC設計方法。在IMC架構下GMVC各個參數的定義與用途變得更為明確,可區分為消除穩態偏移的參數、增加強健性的參數和改善操作性能的參數。吾人據此提出數個系統化的參數設計法,首先指定兩個參數以保證消除穩態偏移,然後在三種強健性指標的限制下藉由調整其餘兩個參數來達到最佳的性能指標。
In industrial processes, generalized minimum variance control (GMVC) can reduce the influence from stochastic disturbances and minimize the variance between the process output and the target value. The conventional design of GMVC lacks a systematic way to satisfy specific requirements on the controlled process. For example, the elimination of the steady-state offset cannot be ensured when the target value changes or a deterministic disturbance occurs; the robustness problem cannot be dealt with in pursuit of the minimum variance.
This thesis proposes an improved GMVC design method in the IMC structure. In the IMC structure, the definition and use of each GMVC design parameter become clearer. These parameters can be distinguished into the one eliminating the steady-state offset, the one increasing robustness, and the one improving performance. We then develop several systematic methods for designing GMVC parameters. First, two parameters are specified to eliminate the steady-state offset. Then, the optimum performance index is achieved by adjusting the rest two parameters under the constraints of three robustness indices.
[1] Allidina, A.Y. and Hughes, F.M., “Generalised self-tuning controller with pole assignment”, IEE Proceedings Part D: Control Theory and Applications, 127, 1, 13-18, 1980.
[2] strm, K.J. and Wittenmark, B., “Online self-tuning regulators”,
Automatica, 9, 2, 185-199, 1973.
[3] Bittanti, S. and Piroddi, L., “GMV technique for nonlinear control with neural networks”, IEE Proceedings-Control Theory Application, 141, 2, 57-69, 1994.
[4] Bittanti, S. and Piroddi, L., “Neural implementation of GMV control schemes based on affine input/output models”, IEE Proceedings-Control Theory Application, 144, 6, 521-530, 1997.
[5] Caglayan, N., Karacan, S., Hapoglu, H., and Alpbaz, M., “Application of optimal adaptive control based on generalized minimum variance to a packed distillation column”, Computers and Chemical Engineering, 21, 1, 607-612, 1997.
[6] Cameron, F. and Seborg, D.E., “Self-tuning controller with a PID structure”, International Journal of Control, 38, 2, 401-417, 1983.
[7] Chen, J.h. and Huang, T.C., “Applying neural networks to on-line updated PID controllers for nonlinear process control”, Journal of Process Control, 14, 2, 211-230, 2004.
[8] Chien, I. L. and Fruehauf, P. S., “Consider IMC tuning to improve controller performance”, Chemical Engineering Progress, 86, 10, 33-41, 1990.
[9] Clarke, D.W. and Gawthrop, P.J., “A Self-Tuning Controller,” Proceedings of IEEE, 126, 6, 633-640, 1979.
[10] Clarke, D.W., “Self-tuning control of nonminimum-phase systems” Automatica, 20, 5, 501-517, 1984.
[11] Ertunc, S., Akay, B., Bursali, N., Hapoglu, H., and Alpbaz, M., “ Generalized minimum variance control of growth medium temperature of baker's yeast production”, Transactions of the Institution of Chemical Engineers, 81, 4, 327-335, 2003.
[12] Filatov, N. M., “Improved dual version of the generalized minimum variance controller”, International Journal of Control, 71, 1, 131-143, 1998.
[13] Garcia, C. E. and Morari, M., “Internal model control: 1. a unifying review and some new results”, Industrial & Engineering Chemistry, Process Design and Development, 21, 2, 308-323, 1982.
[14] Gawthrop, P.J. , Jones, R.W., and Sbarbaro, D.G., “Emulator-based control and internal model control: complementary approaches to robust control design”, Automatica, 32, 8, 1223-1227, 1996.
[15] Hussain, A., Zayed, A., and Smith, L., “A New Neural Network and pole-placement based adaptive composite self-tuning controller”, proceedings 5th IEEE international multi-topic Conference (INMIC’2001), Lahore, Pakistan, 267-271, 2001.
[16] Karagz, A. R., Hapoglu, H., and Alpbaz, M., “Generalized minimum variance control of optimal temperature profiles in a polystyrene polymerization reactor”, Chemical Engineering and Processing, 39, 3 253-262, 2000.
[17] Landau, I.D. and Zito, G., Digital Control Systems- Design, Identification and Implementation, Springer: France, 2006.
[18] Lee, Y., Park, S., Lee, M., and Brosilow, C., “PID controller tuning for desired closed-loop responses for SI/SO systems”, AIChE Journal, 44, 1, 106-115, 1998.
[19] Koivo, H.N., “A multivariable self-tuning controller”, Automatica, 16, 4, 351-366, 1980.
[20] Milito, R., Padilla, C. S., Padilla, R. A., and Cadorin, D., “An innovations approach to dual control”, IEEE Transactions on Automatic Control, 27, 1, 132-137, 1982.
[21] Namba, R., Yamamoto, T., and Kaneda, M., “Robust PID controller and its application”, Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, 4, 3636-3641, 1997.
[22] Norio, M., Masao, I., Kyoji, H., Wood, R. K., Hirofumi, H., and ituyoshi, O., “Auto-tuning PID controller based on generalized minimum variance control for a PVC reactor,” Journal of Chemical Engineering of Japan, 31, 4, 626-632, 1998.
[23] Ramos, M. A. P., Marquez, E.Q.M., and Busto, R. F. D., “ Generalized minimum variance with pole assignment controller modified for practical applications”, Proceedings of the IEEE International Conference on Control Applications, 2, 1347-1352, 2004.
[24] Rivera, D. E., Morari, M., and Skogestad, S., “Internal model control: 4. PID controller design”, Industrial & Engineering Chemistry, Process Design and Development, 25, 1, 252-265, 1986.
[25] Seborg, D. E., Edgar, T. F., and Mellichamp , D. A., Process Dynamics and Control, John Wiley & Sons: New York, 1989.
[26] Wellstead, P. E., Zanker, P., and Edmunds, J. M., “Pole assignment self-tuning regulator” Proceedings of IEE, 126, 8, 781-787, 1979.
[27] Yamamoto, T., Fujii, K., and Kaneda, M., “Self-tuning temperature control of a polymerizing reactor”, IEEE Conference on Control Applications – Proceedings, 2, Trieste, Italy, 1110-1114, 1998.
[28] Yusof, R., Omatu, S., and Khalid, M., “Application of self-tuning PI (PID) controller to a temperature control system”, IEEE Conference on Control Applications – Proceedings, 2, 1181-1186, 1994.
[29] Zayed, A.S., Petropoulakis, L., and Katebi, M.R., “An explicit multivariable self-tuning pole-placement PID controller”, 12th International Conference on systems Engineering (ICSE’97), Coventry, U.K., 778-785, 1997.
[30] Zayed, A. S., Hussain, A., and Smith, L.S., “A multivariable generalized minimum-variance stochastic self-tuning controller with pole-zero placement”, International Journal of Control and Intelligent Systems, 32, 1, 35-44, 2004.
[31] Zhu, Q., Ma, Z. and Warwick, K., “Neural network enhanced generalized minimum variance self-tuning controller for nonlinear discrete-time systems”, IEE Proceedings: Control Theory and Applications, 146, 4, 319-326, 1999.
[32] Ziegler, J.G. and Nichols, N.B., “Optimum setting for automatic controllers,” Transactions of the ASME, 64, 759-768, 1942.