簡易檢索 / 詳目顯示

研究生: 林依婷
Lin, I-Ting
論文名稱: 航空公司地勤人員排班問題之研究
The Airline Ground Staff Scheduling Problem
指導教授: 林東盈
Lin, Dung-Ying
學位類別: 碩士
Master
系所名稱: 管理學院 - 交通管理科學系
Department of Transportation and Communication Management Science
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 55
中文關鍵詞: 航空地勤人員人員排班問題人員輪班問題
外文關鍵詞: Airline ground staff, Crew scheduling problem, Crew rostering problem
相關次數: 點閱:94下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 航空公司營運除仰賴良好之機隊規劃外,人力資源之分配亦為重要一環,而人力資源部分可另細分為空勤組與地勤組,本研究著重探討航空公司地勤組員之排班。地勤人員管理又可視為人員排班(Crew Scheduling Problem)與輪班問題(Crew Rostering Problem)之組合,兩者求解複雜度皆高,而本次研究調查之航空公司因排班系統未與時俱進,導致排班人員於取得自動化排班後,仍須以人工處理才能實際使用,再加上排班調整耗時,無法處理多日後之班表,不僅缺乏效率且傳承不易,故本研究針對人員排班及輪班問題(皆分季班表與日班表)建構整數規劃數學模式,並利用商業套裝軟體進行求解。
    數據研究指出,以本研究之數學模型搭配商業套裝軟體可於有效時間內求解完成,根據人員數量之不同,基本上可於五分鐘內完成求解。另外,由於航空公司被分配之時間帶所限制,導致地勤人員之人力需求數於尖峰與離峰時段相差甚大,使得人工調整班表更困難,為了解需增加多少人力才得以滿足所有未指派勤務,本研究歸納出一套加入虛構人員於班表中之程序。

    Apart from efficient aircraft planning, human resource planning also plays a vital role in airline operations. Airline crew comprises flight crew and ground staff. And the ground staff scheduling problem can be further divided into the crew scheduling problem and the rostering problem. The current scheduling system of the airline investigated herein can no longer obtain automatically applicable schedules due to changes in the scheduling logistics of the aviation industry. Planners therefore must devote a huge amount of time to rearranging schedules to make them feasible, which is time-consuming for planners and difficult to train new planners for companies. This research proposes three integer programming mathematical models for the ground staff scheduling problem and solves them with the commercial optimization software Gurobi®. The empirical results indicate that the scheduling problem can be solved efficiently. Moreover, we find that due to restrictions in the number of airline time slots, gaps in the requirement for manpower between peaks and off-peak times are significant, which leads to increased staff workloads. Therefore, we further propose a process to manually determine how many 8-hour and/or 4-hour shift staff are needed to complete unassigned tasks.

    摘要 i Abstract ii 誌謝 iii LIST OF TABLES vi LIST OF FIGURES vii 1 INTRODUCTION 1 1.1 Motivation 1 1.2 Objectives 6 1.3 Research Flow Chart 6 2 LITERATURE REVIEW 8 2.1 The Crew Scheduling Problem 8 2.1.1 The Bus Driver Scheduling Problem 9 2.1.2 The Railway Crew Scheduling Problem 10 2.1.3 The Airline Crew Scheduling Problem 11 2.2 The Crew Rostering Problem 13 2.2.1 The Bus Driver Rostering Problem 14 2.2.2 The Railway Crew Rostering Problem 14 2.2.3 The Airline Crew Rostering Problem 15 2.3 The Airline Ground Staff Scheduling Problem 17 2.4 Summary 19 3 MATHEMATICAL FORMULATION 20 3.1 Problem Statement and Assumption 20 3.2 Duty/Task Generation Procedure 23 3.3 Seasonal (and Weekly) Schedule for the CTR/BGS System 24 3.3.1 The Notation for the Weekly Schedule 25 3.3.2 The Mathematical Formulation for the Weekly Schedule 26 3.3.3 The Notation for the Seasonal Schedule 28 3.3.4 The Mathematical Formulation for the Seasonal Schedule 29 3.4 Daily Schedule for the CTR/BGS System 31 3.4.1 The Notation for the Daily Schedule 32 3.4.2 The Mathematical Formulation for the Daily Schedule 33 3.5 Key Performance Indicators (KPIs) 34 4 EMPIRICAL STUDIES 35 4.1 Studies on the Seasonal (and Weekly) Schedule 35 4.1.1 The BGS Seasonal (and Weekly) Schedule 35 4.1.2 The CTR Seasonal (and Weekly) Schedule 37 4.2 Studies on the Daily Schedule 39 4.2.1 The BGS Daily Schedule 39 4.2.2 The CTR Daily Schedule 40 4.3 Sensitivity Analysis of Working Hours for the Daily Schedule 41 4.3.1 The BGS Daily Schedule 42 4.3.2 The CTR Daily Schedule 43 4.3.3 Summary 43 4.4 Extended Research 44 4.4.1 The BGS Daily Schedule 45 4.4.2 The CTR Daily Schedule 46 5 CONCLUSIONS AND FUTURE RESEARCH 49 5.1 Conclusions 49 5.2 Future Research 51 REFERENCES 53

    Ashford, N., Stanton, H., & Moore, C. (1998). Airport operations: McGraw-Hill Professional.

    Beasley, J. E. (1987). An algorithm for set covering problem. European Journal of Operational Research, 31(1), 85-93.

    Békési, J., Brodnik, A., Krész, M., & Pash, D. (2009). An integrated framework for bus logistics management: Case studies Logistik Management (pp. 389-411): Springer.

    Bianco, L., Bielli, M., Mingozzi, A., Ricciardelli, S., & Spadoni, M. (1992). A heuristic procedure for the crew rostering problem. European Journal of Operational Research, 58(2), 272-283.

    Caprara, A., Fischetti, M., Toth, P., Vigo, D., & Guida, P. L. (1997). Algorithms for railway crew management. Mathematical programming, 79(1-3), 125-141.

    Caprara, A., Toth, P., Vigo, D., & Fischetti, M. (1998). Modeling and solving the crew rostering problem. Operations Research, 46(6), 820-830.

    Carraresi, P., & Gallo, G. (1984). A multi-level bottleneck assignment approach to the bus drivers' rostering problem. European Journal of Operational Research, 16(2), 163-173.

    Carraresi, P., Nonato, M., & Girardi, L. (1995). Network models, lagrangean relaxation and subgradients bundle approach in crew scheduling problems Computer-Aided Transit Scheduling (pp. 188-212): Springer.

    Ceria, S., Nobili, P., & Sassano, A. (1998). A Lagrangian-based heuristic for large-scale set covering problems. Mathematical programming, 81(2), 215-228.

    Chu, S. C. (2007). Generating, scheduling and rostering of shift crew-duties: Applications at the Hong Kong International Airport. European Journal of Operational Research, 177(3), 1764-1778.

    Clausen, T. (2011). Airport ground staff scheduling: DTU Management Engineering.

    Deng, G.-F., & Lin, W.-T. (2011). Ant colony optimization-based algorithm for airline crew scheduling problem. Expert Systems with Applications, 38(5), 5787-5793.

    Desrochers, M., & Soumis, F. (1989). A column generation approach to the urban transit crew scheduling problem. Transportation Science, 23(1), 1-13.

    Dowling, D., Krishnamoorthy, M., Mackenzie, H., & Sier, D. (1997). Staff rostering at a large international airport. Annals of Operations Research, 72, 125-147.

    Dylan, B. (1964). The Times They Are a-Changin'. On The Times They Are A Changin'. The United States: Columbia Records.

    Ernst, A. T., Jiang, H., Krishnamoorthy, M., & Sier, D. (2004). Staff scheduling and rostering: A review of applications, methods and models. European Journal of Operational Research, 153(1), 3-27.

    Gamache, M., Soumis, F., Marquis, G., & Desrosiers, J. (1999). A column generation approach for large-scale aircrew rostering problems. Operations Research, 47(2), 247-263.

    Garfinkel, R. S., & Nemhauser, G. L. (1969). The set-partitioning problem: set covering with equality constraints. Operations Research, 17(5), 848-856.

    Gary, M. R., & Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory of NP-completeness: WH Freeman and Company, New York.

    Gopalakrishnan, B., & Johnson, E. L. (2005). Airline crew scheduling: state-of-the-art. Annals of Operations Research, 140(1), 305-337.

    Hsieh, M. J. (2007). The Development of Taiwan's Shipping Industry (台灣航運業的發展). NPF Research Report (國改研究報告). Retrieved 10/20, 2016, from http://www.npf.org.tw/2/2972

    Jütte, S., & Thonemann, U. W. (2015). A graph partitioning strategy for solving large-scale crew scheduling problems. OR Spectrum, 37(1), 137-170.

    Kohl, N., & Karisch, S. E. (2004). Airline crew rostering: Problem types, modeling, and optimization. Annals of Operations Research, 127(1-4), 223-257.

    Kohl, N., Larsen, A., Larsen, J., Ross, A., & Tiourine, S. (2007). Airline disruption management—perspectives, experiences and outlook. Journal of Air Transport Management, 13(3), 149-162.

    Kwan, R. S. (2004). Bus and train driver scheduling. Handbook of scheduling: algorithms, models, and performance analysis, 51.51-51.18.

    Kwan, R. S. (2011). Case studies of successful train crew scheduling optimisation. Journal of Scheduling, 14(5), 423-434.

    Lučic, P., & Teodorovic, D. (1999). Simulated annealing for the multi-objective aircrew rostering problem. Transportation Research Part A: Policy and Practice, 33(1), 19-45.

    Martello, S., & Toth, P. (1986). A heuristic approach to the bus driver scheduling problem. European Journal of Operational Research, 24(1), 106-117.

    Medard, C. P., & Sawhney, N. (2007). Airline crew scheduling from planning to operations. European Journal of Operational Research, 183(3), 1013-1027.

    Mingozzi, A., Boschetti, M., Ricciardelli, S., & Bianco, L. (1999). A set partitioning approach to the crew scheduling problem. Operations Research, 47(6), 873-888.

    Nurmi, K., Kyngäs, J., & Post, G. (2011). Driver rostering for bus transit companies. Engineering Letters, 19(2), 125-132.

    Raff, S. (1983). Routing and scheduling of vehicles and crews: The state of the art. Computers & Operations Research, 10(2), 63-211.

    Ramalhinho-Lourenço, H., Pinto, J., & Portugal, R. (1998). Metaheuristics for the bus-driver scheduling problem.

    Smith, B. M., & Wren, A. (1988). A bus crew scheduling system using a set covering formulation. Transportation Research Part A: General, 22(2), 97-108.

    Steinzen, I. (2007). Topics in integrated vehicle and crew scheduling in public transport. Unpublished doctoral dissertation, University of Paderborn, Paderborn, Germany.

    Umetani, S., Yagiura, M., & 柳浦睦憲. (2007). Relaxation heuristics for the set covering problem. Journal of the Operations Research Society of Japan, 50(4), 350-375.

    Wren, A., & Rousseau, J.-M. (1995). Bus driver scheduling—an overview Computer-aided transit scheduling (pp. 173-187): Springer.

    無法下載圖示 校內:2022-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE