| 研究生: |
伍俊瑋 Wu, Chun-Wei |
|---|---|
| 論文名稱: |
應用可調變二極體雷射吸收光譜量測燃燒尾氣溫度及二氧化碳濃度 Measurements of Temperature and CO2 Concentration in Combustion Exhaust Gas Using Tunable Diode Laser Absorption Spectroscopy |
| 指導教授: |
吳明勳
Wu, Ming-Hsun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 161 |
| 中文關鍵詞: | 可調製二極體吸收光譜(TDLAS) 、燃燒尾氣 、CO2濃度 、溫度量測 、多通道氣室 |
| 外文關鍵詞: | Tunable Diode Laser Absorption Spectroscopy (TDLAS), combustion exhaust, CO2 concentration, temperature measurement, multipass gas cell |
| 相關次數: | 點閱:58 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
可調諧二極管激光吸收光譜(Tunable Diode Laser Absorption Spectroscopy,簡稱TDLAS)是一種利用雷射進行光譜氣體檢測的技術。它具有非侵入式、選擇性強、靈敏度高、可瞬時量測以及抗背景光譜干擾能力強等優點,特別適用於複雜環境中的氣體量測。在惡劣環境中確定溫度和氣體濃度分佈是具有挑戰性的,因為傳統的熱電偶或氣體採樣系統等侵入式測量方法會對流場產生影響並干擾火焰。
本實驗室開發了一套基於TDLAS技術的氣體量測系統。首先,利用HITRAN數據庫對燃燒產物氣體的光譜進行詳細分析,並結合NASA CEA(Chemical Equilibrium with Applications)計算的燃燒產物組成數據,選擇出合適的雷射波段來測量燃燒尾氣的溫度及CO2濃度。為了驗證系統的準確性,將測量結果與傳統的熱電偶和氣體分析儀進行了系統性的比較和分析。
此外設計了環型反射光學氣室,該氣室利用星型反射路徑來增加雷射光的反射次數。從而有效地延長光程,顯著提高了量測靈敏度和信號強度。這一設計特別考慮了光路的偏心5度角,使得雷射光在光學氣室內部能夠進行多次反射,從而實現了更高的測量精度和穩定性。為了驗證設計的光學氣室的性能,測量了不同CO2濃度範圍內的光譜響應。實驗結果表明,該光學氣室在CO2濃度為0.5 %至5 %的範圍內,顯示出良好的線性響應,這充分說明了該系統在低濃度氣體測量中的優異表現和可靠性。
最後,將TDLAS應用於50 kW燃氣爐,測量丙烷燃燒過程中不同當量比下的溫度與CO₂濃度變化,成功在50 kW燃燒條件下精確監測溫度和CO₂濃度的動態變化,溫度量測誤差為10 %,CO2濃度與訊號呈線性關係。
Tunable Diode Laser Absorption Spectroscopy (TDLAS) is a laser-based gas detection technique characterized by its non-invasiveness, strong selectivity, high sensitivity, instantaneous measurement capabilities, and strong resistance to background spectral interference. Determining temperature and gas concentration distribution in harsh environments is challenging because invasive measurement methods such as thermocouples or gas sampling systems can affect the flow field and interfere with flames. TDLAS is suitable for gas measurements in complex environments. Our laboratory has developed a TDLAS measurement system that utilizes the HITRAN database for analyzing the spectra of combustion by-product gases. This enables us to select appropriate laser wavelengths for measuring CO2 concentration and temperature in combustion exhaust gases. The system's performance has been compared with traditional thermocouples and gas analyzers. Additionally, we have designed a ring-shaped reflective optical cell that employs a star-shaped reflection path to enhance the number of laser beam reflections, thereby increasing the optical path length and improving measurement sensitivity. The optical cell design incorporates a 5-degree eccentric angle to facilitate multiple reflections of the laser beam inside the cell, achieving higher measurement precision. Experimental results demonstrate that the optical cell exhibits a linear response within the CO2 concentration range of 0.5% to 5%. This indicates excellent sensitivity and accuracy of our TDLAS measurement system for gas analysis in combustion processes. Finally, TDLAS was applied to a 50 kW gas burner to measure temperature and CO₂ concentration variations during propane combustion under different equivalence ratios. The system successfully monitored the dynamic changes in temperature and CO₂ concentration under 50 kW combustion conditions with high precision. The temperature measurement error was 10%, and the CO₂ concentration exhibited a linear relationship with the signal.
[1] A.V.S. Oliveira, A. Avrit and M. Gradeck (2022), Thermocouple response time estimation and temperature signal correction for an accurate heat flux calculation in inverse heat conduction problems, International Journal of Heat and Mass Transfer 185, 122398.
[2] R. Lemaire and S. Menanteau (2017), Assessment of radiation correction methods for bare bead thermocouples in a combustion environment, International Journal of Thermal Sciences 122, 186-200.
[3] J. Manara, M. Zipf, T. Stark, M. Arduini and H.-P. Ebert, A. Tutschke, A. Hallam, J. Hanspal, M. Langley, D. Hodge and J. Hartmann (2017), Long wavelength infrared radiation thermometry for non-contact temperature measurements in gas turbines, Infrared Physics & Technology 80, 120-130.
[4] E. Lisiecka (2017), Reduction of the impact of emissivity on high temperature measurements in non-contact thermometric devices, Optica Applicata 47(3), 373-381.
[5] B. Abad, D.-A. Borca-Tasciuc and M.S. Martin-Gonzalez (2017), Non-contact methods for thermal properties measurement, Renewable and Sustainable Energy Reviews 76, 1348-1370.
[6] T. Kamimoto, Y. Deguchi, Y. Shisawa, Y. Kitauchi and Y. Eto (2016), Development of fuel composition measurement technology using laser diagnostics, Applied Thermal Engineering 102, 596-603.
[7] J. Lee, C. Bong, J. Yoo and M.S. Bak (2020), Combined use of TDLAS and LIBS for reconstruction of temperature and concentration fields, Optics Express 28, 21121-21133.
[8] M.M. Sentko, S. Schulz, B. Stelzner, C. Anderlohr, M. Vicari and D. Trimis (2020), Determination of temperature and water-concentration in fuel-rich oxy-fuel methane flames applying TDLAS, Combustion and Flame 214, 336-345.
[9] M. Bramanti, E.A. Salerno, A. Tonazzini, S. Pasini and A. Gray (1996), An acoustic pyrometer system for tomographic thermal imaging in power plant boilers, IEEE Transactions on Instrumentation and Measurement 45(1), 159–167.
[10] S. Zhang, G. Shen and L. An (2019), Online monitoring of furnace exit gas temperature in power plants, Applied Thermal Engineering 147, 917-926.
[11] Ł. Śladewski, K. Wojdan, K. Świrski, T. Janda, D. Nabagło and J. Chachuła (2017), Optimization of combustion process in coal-fired power plant with utilization of acoustic system for in-furnace temperature measurement, Applied Thermal Engineering 123 ,711-720.
[12] S.H Jin and G.S Kim (2021), Simultaneous measurements of burning velocity and temperature distribution of combustion using UV laser Rayleigh scattering, Measurement 169, 1085005.
[13] Y. Krishna, A.M Mahuthannan, X. Luo, D.A. Lacoste and G. Magnotti (2021), High-speed filtered Rayleigh scattering thermometry in premixed lames through narrow channels, Combustion and Flame 225, 329-339.
[14] A.D. Shutov, J. T. Harrington, H. Zhu, D.W. Wang, D. Zhang and V.V. Yakovlev (2021), Coherent anti-stokes Raman scattering microspectroscopy: an emerging technique for non-invasive optical assessment of a local bio-nano-environment, IEEE Journal of Selected Topics in Quantum Electronics 27, 1-6.
[15] Y. Song, H. Wu, G. Zhu, Y. Zeng, G. Yu and Y. Yang (2022), A femtosecond time-resolved coherent anti-Stokes Raman spectroscopy thermometry for steady-state high-temperature flame, Combustion and Flame 242, 112166.
[16] Y. Zhang, T. Zhang and H. Li (2021), Application of laser-induced breakdown spectroscopy (LIBS) in environmental monitoring, Spectrochimica Acta Part B: Atomic Spectroscopy 181, 106218.
[17] Z. Zhou, Y. Ge and Y. Liu (2021), Real-time monitoring of carbon concentration using laser-induced breakdown spectroscopy and machine learning, Optics Express 29, 39811-39823.
[18] X. Tu, F. Dong, F. Qi, Y. Zhang, W. Liu and J. Liu (2005), On-road remote sensing of CO and CO2 of motor vehicle exhaust emissions in Beijing using a TDLAS system, Optical Technologies for Atmospheric, Ocean, and Environmental Studies, Bellingham, WA.
[19] A. Hartmann, R. Strzoda, R. Schrobenhauser and R. Weigel (2014), CO2 sensor for mainstream capnography based on TDLAS, Applied Physics B 116(4), 1023–1026.
[20] F. Xin, J. Li, J. Guo, D. Yang, Y. Wang, Q. Tang and Z. Liu (2021), Measurement of atmospheric CO2 column concentrations based on open-path TDLAS, Sensors 21(5), 1722.
[21] J.A. Nwaboh, O. Werhahn, P. Ortwein, D. Schiel and V. Ebert (2012), Laser-spectrometric gas analysis: CO2–TDLAS at 2 µm, Measurement Science and Technology 24(1), 015202.
[22] C. Li, L. Shao, L. Jiang, X. Qiu, J. Wei and W. Ma (2018), Simultaneous measurements of CO and CO2 employing wavelength modulation spectroscopy using a signal averaging technique at 1.578 μm, Applied Spectroscopy 72(9), 1380-1387.
[23] J.W. Zimmerman, R.A. Ii, C.S. Blakley, M.B. Frish, M.C. Laderer and R.T. Wainner (2014), Tunable diode laser absorption spectrometers for CO2 wellhead and pipeline leakage monitoring: experiences from prototype testing at the illinois basin - decatur project, USA, Energy Procedia 63, 4083-4094.
[24] A. Pogány, S. Wagner, O. Werhahn and V. Ebert (2015), Development and metrological characterization of a tunable diode laser absorption spectroscopy (TDLAS) spectrometer for simultaneous absolute measurement of carbon dioxide and water vapor, Applied Spectroscopy 69(2), 257-268.
[25] J. Dang, H. Yu, F. Song, Y. Wang, Y. Sun and C. Zheng (2018), An early fire gas sensor based on 2.33 µm DFB laser, Infrared Physics & Technology 92, 84-89.
[26] S.J. Chen, D.C. Hovde, K.A. Peterson and A.W. Marshall (2007), Fire detection using smoke and gas sensors, Fire Safety Journal 42(8), 507-515.
[27] S. So, J. Park, A. Song, J. Hwang, M. Yoo and C. Lee (2020), Detection limit of CO concentration measurement in LPG/Air flame flue gas using tunable diode laser absorption spectroscopy, Energies 13(16), 4234.
[28] L. Shao, B. Fang, F. Zheng, X. Qiu, Q. He, J. Wei and W. Zhao (2019), Simultaneous detection of atmospheric CO and CH4 based on TDLAS using a single 2.3µm DFB laser, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 222, 117118.
[29] J. Shao, Y. Han, Z. Zhou and R.F. Kan (2013), CO sensor with high concentrations of H2O at elevated temperature by TDLAS, Advanced Materials Research 807-809, 66-72.
[30] A. Sepman, Y. Ögren, M. Gullberg and H. Wiinikka (2016), Development of TDLAS sensor for diagnostics of CO, H2O and soot concentrations in reactor core of pilot-scale gasifier, Applied Physics B 122, 29.
[31] T.L. Barbu, I. Vinogradov, G. Durry, O. Korablev, E. Chassefière and J.L. Bertaux (2006), TDLAS a laser diode sensor for the in situ monitoring of H2O, CO2 and their isotopes in the Martian atmosphere, Advances in Space Research 38(4), 718-725.
[32] W.B Weng, J. Larsson, J. Bood, M. Aldén and Z Li (2022), Quantitative Hydrogen Chloride Detection in Combustion Environments Using Tunable Diode Laser Absorption Spectroscopy with Comprehensive Investigation of Hot Water Interference, Applied Spectroscopy 76(2), 207-215.
[33] T. Behrendt, C. Hassa and A. Mohamed (2008), In situ measurement and validation of gaseous species concentrations of a gas turbine model combustor by tunable diode laser absorption spectroscopy (TDLAS), Proceedings of ASME Turbo Expo 2008: Power for Land, Sea and Air, GT2008-51258.
[34] T.R. Meyer and S. Roy (2005), 10kHz detection of CO2 at 4.5μm by using tunable diode-laser-based difference-frequency generation, Optics Letters 30(22), 3087-308.
[35] X. Liu, J.B. Jeffries, R.K. Hanson, K.M. Hinckley and M.A. Woodmansee (2005), Development of a tunable diode laser sensor for measurements of gas turbine exhaust temperature, Applied Physics B 82(3), 469-478.
[36] S. Buerkle, M. Greifenstein, S. Wagner, A. Dreizler and V. Ebert (2016), Optical sensing of turbine inlet temperature in a pressurized gas turbine combustor, Imaging and Applied Optics 2016, 1-3.
[37] G.S. Jatana, A.K. Perfetto, S.C. Geckler and W.P. Partridge (2019), Absorption spectroscopy based high-speed oxygen concentration measurements at elevated gas temperatures, Sensors and Actuators B: Chemical 293, 173-182.
[38] M.E. Leon (2007), Diode laser measurement of H2O, CO2, and temperature in gas turbine exhaust through the application of WMS, University of California San Diego.
[39] R. Tu, J. Gu, Y. Zeng, X Zhou, K Yang, J. Jing, Z. Miao and J. Yang (2022), Development and Validation of a Tunable Diode Laser Absorption Spectroscopy System for Hot Gas Flow and Small-Scale Flame Measurement, Sensors 22, 6707.
[40] W. Zhou, Z. Cao, S. Dou, Q. Yang and L. Xu (2024), 120 kHz mid-infrared TDLAS sensor for H2O concentration and temperature measurement in rotating detonation engine exhaust flows, Measurement 234, 114787.
[41] Y. Gao, Y. Liu, Z. Dong, D. Ma, B. Yang and C. Qiu (2023), Preliminary experimental study on combustion characteristics in a solid rocket motor nozzle based on the TDLAS system, Energy 268(1), 126741.
[42] R. Wang, T. Huang, J. Mei, G. Wang, K. Liu, R. Kan, W. Chen and X. Gao (2024), Pressure sensing with two-color laser absorption spectroscopy for combustion diagnostics, Optics Letters 49(4), 1033-1036.
[43] X.L Huang, N. Li, C.S Weng and Y. Kang (2022), In situ measurement on nonuniform velocity distribution in external detonation exhaust flow by analysis of spectrum features using TDLAS, Chinese Physics B 31(1), 014703.
[44] S. Jung, H. Shim, G. Kim and G. Park (2023), Area-based velocimetry using TDLAS for low-speed flow, Journal of Mechanical Science and Technology 37, 4099-4108.
[45] H. Minagawa, S. Yoshimura, K. Terasaka and M. Aramaki (2023), Enhancement of Doppler spectroscopy to transverse direction by using optical vortex, Scientific Reports 13, 15400.
[46] R. Zhao, B. Zhou, J. Zhang, R. Cheng, Q. Liu, M. Dai, B. Wang and Y. Wang (2023), Rapid online tomograph in non-uniform complex combustion fields based on laser absorption spectroscopy, Experimental Thermal and Fluid Science 147(1), 110930.
[47] S. Qiu, Z. Cao, X. Zhang and L. Xu (2023), Single Spectral Line Method for TDLAS Imaging of Temperature and Water Vapor Concentration, IEEE Transactions on Instrumentation and Measurement 72, 1-11.
[48] W. Zhou, R. Zhang, X. Qin, Z. Wang, Y. Deguchi, D. Chong and J. Yan (2024), Application of UVAS and TDLAS-based multi-combustion-parameter diagnosis using computerized tomography, Optics and Lasers in Engineering 178, 108255.
[49] J.U. White (1942), Long optical paths of large aperture, Journal of the Optical Society of America 32(5), 285.
[50] D. Herriott, H. Kogelnik and R. Kompfner (1964), Off-axis paths in spherical mirror interferometers, Applied Optics 3(4), 523.
[51] J.A. Silver (2005), Simple dense-pattern optical multipass cells, Applied Optics 44, 6545.
[52] V.L. Kasyutich (2009), Laser beam patterns of an optical cavity formed by two twisted cylindrical mirrors, Applied Physics B 96, 141.
[53] J.B. McManus, P.L. Kebabian and M.S. Zahniser (1995), Astigmatic mirror multipass absorption cells for long-path-length spectroscopy, Applied Optics 34(18), 3336.
[54] B. Bernacki (2011), Multipass optical device and process for gas and analyte determination, U.S. Patent 7876443.
[55] B. Tuzson, M. Mangold, H. Looser, A. Manninen and L. Emmenegger (2013), Compact multipass optical cell for laser spectroscopy, Optics Letters 38(3), 257.
[56] A. Javareshkian, S. Tabejamaat, S. Sarrafan-Sadegh and M. Baigmohammadi (2017), An experimental study on the effects of swirling oxidizer flow and diameter of fuel nozzle on behaviour and light emittance of propane-oxygen non-premixed flame, Thermal Science 21(3), 1453-1462.
[57] M. Ghaffarpour and A. Noorpoor (2008), Effects of swirl flow on spray characteristics in a swirl-stabilized combustor, Journal of Fluid Science and Technology 3(7), 906-920.
[58] M.C Chiong, A Valera-Medina, W.W.F Chong, C.T Chong, G.R Mong and M.N Mohd Jaafar (2020), Effects of swirler vane angle on palm biodiesel/natural gas combustion in swirl-stabilised gas turbine combustor, Fuel 277, 118213.