簡易檢索 / 詳目顯示

研究生: 謝佩璇
Hsieh, Pei-Hsuan
論文名稱: 即時性時間空間多規則同時偵測技術
Online Spatio-Temporal Rule Matching with Multiple Specifications
指導教授: 莊坤達
Chuang, Kun-ta
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 46
中文關鍵詞: 條件限制搜尋即時事件偵測時間空間搜尋密集區查詢
外文關鍵詞: Spatial-Temporal Region Query, Real-time Event Detection, Dense Region Query, Constraints-based Continuous Query
相關次數: 點閱:67下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,各種時間空間資訊透過各種定位工具被大量產生,如何即時偵測符合需求的事件即是一個需要被討論的議題。 本篇論文探討如何在給訂多條時間空間條件的規則下,即時偵測符合各規則的事件集。 規則中的三個條件由使用者給訂,分別為時間區間、空間範圍、空間內需涵蓋多少事件,本篇演算法即能即時回傳所有符合此條件的所有結果。此項技術能被應用於偵測時間空間上的群聚事件、擴散行為的偵測,例如,在傳染病偵測,多利用短時間內在某一範圍內到達某個數量級,即可認為是一種群聚感染的爆發。然而,要在空間中搜尋範圍中涵蓋指定數量點的事件數,需要搜尋無限個圓空間範圍,會導致無限個計算量。現有的文獻多為找分群或是以格狀簡化空間資訊,判斷該區域中是否達到某個數量的事件點。然而這些相關參考文獻無法直接轉化應用於我們的目標,所以我們提出了「即時性時間空間多規則同時偵測技術」,根據使用者給訂的規則,找尋符合規則定義中的群聚事件集。

    本方法能同時找出符合多條不同時間、空間、數量條件的所有群聚事件集,並做到線上即時偵測與刪除過期點。在實驗中也測試不同規則參數配置中,各方法的執行速度。我們同時實驗了多條規則同時運行與單條規則運行多次的時間比較。實驗中也加入去年登革熱資料模擬實際應用於疫情傳染並偵測時的狀況。

    To prevent the spreading of infectious disease in the epidemiology field, it is an important task to monitor the burst of the infectious events, which, there are lots of people get the particular disease in the close proximity in terms of both time and geography. However, not all people with infectious disease have the clear syndrome, such as the dengue fever patients. Therefore, the reported events might not reveal the actual spreading situation of the disease. The existing methods such as the dense region query, density-based clustering methods cannot directly applied to meet our needs. Therefore, to find all the suspicious infectious clusters, we propose the STMS method which is able to online detect all the specified event sets based on the user given spatio-temporal constraints. Users simply give multiple specifications which include the time interval, the circle-shaped of the spatial range constraint, the threshold of the number of the events. The STMS method is able to online detect and return the specified event sets which meet the corresponding specification.

    In this paper, we propose three methods which include the intuitive method, the method based on the concept of the minimum enclosing circle (MEC), and the STMS method. The synthetic data and the real data set is applied to evaluate different performance of the method in different characteristic of the data set. We find that the STMS method has the better performance in the clustering-like data; the MEC method is suited for situation of the larger number of the event threshold.

    中文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4 Spatial Temporal Matching Specification (STMS) framework . . . . . . . . . . . . . . 15 4.1 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.2 Single Specification (S-STMS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.2.1 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.2.2 Candidates generation and Aggregation . . . . . . . . . . . . . . . . . . . 17 4.2.3 Online Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.3 Multiple Specification (M-STMS) . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.3.1 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.3.2 Candidates generation and Aggregation . . . . . . . . . . . . . . . . . . . 24 4.3.3 Online Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.1 Experimental Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.2 Data Set Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.2.1 Specification : Diameter . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.2.2 Specification : Time Interval . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.2.3 Specification : Threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.2.4 Multiple Specifications Performance Comparison . . . . . . . . . . . . . . 35 5.2.5 Real Data Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

    [1] Abdelhaq, H., Sengstock, C., and Gertz, M. Eventweet: Online localized event
    detection from twitter. Proc. VLDB Endow. 6, 12 (Aug. 2013), 1326–1329.
    [2] Aggarwal, C. C., Han, J., Wang, J., and Yu, P. S. A framework for clustering
    evolving data streams. In VLDB (2003), pp. 81–92.
    [3] Aggarwal, C. C., and Reddy, C. K., Eds. Data Clustering: Algorithms and Applications.
    CRC Press, 2014.
    [4] Agrawal, R., Gehrke, J., Gunopulos, D., and Raghavan, P. Automatic subspace
    clustering of high dimensional data for data mining applications. In SIGMOD 1998,
    Proceedings ACM SIGMOD International Conference on Management of Data, June 2-4,
    1998, Seattle, Washington, USA. (1998), pp. 94–105.
    [5] Amini, A., Wah, T. Y., and Saboohi, H. On density-based data streams clustering
    algorithms: A survey. Journal of Computer Science and Technology 29, 1 (2014), 116–141.
    [6] Andrienko, N. V., Andrienko, G. L., Fuchs, G., Rinzivillo, S., and Betz, H.-
    D. Detection, tracking, and visualization of spatial event clusters for real time monitoring.
    In DSAA (2015), IEEE, pp. 1–10.
    [7] Banik, A., Bhattacharya, B. B., and Das, S. Minimum enclosing circle of a set of
    fixed points and a mobile point. Comput. Geom. 47, 9 (2014), 891–898.
    [8] Becker, H., Naaman, M., and Gravano, L. Learning similarity metrics for event
    identification in social media. In Proceedings of the Third International Conference on
    Web Search and Web Data Mining, WSDM 2010, New York, NY, USA, February 4-6,
    2010 (2010), pp. 291–300.
    [9] Cao, F., Ester, M., Qian, W., and Zhou, A. Density-based clustering over an
    evolving data stream with noise. In Proceedings of the Sixth SIAM International Conference
    on Data Mining, April 20-22, 2006, Bethesda, MD, USA (2006), pp. 328–339.
    43
    [10] Chen, L., and Roy, A. Event detection from flickr data through wavelet-based spatial
    analysis. In Proceedings of the 18th ACM Conference on Information and Knowledge
    Management, CIKM 2009, Hong Kong, China, November 2-6, 2009 (2009), pp. 523–532.
    [11] Dong, X., Mavroeidis, D., Calabrese, F., and Frossard, P. Multiscale event
    detection in social media. Data Min. Knowl. Discov. 29, 5 (2015), 1374–1405.
    [12] Ester, M., Kriegel, H., Sander, J., and Xu, X. A density-based algorithm for
    discovering clusters in large spatial databases with noise. In Proceedings of the Second
    International Conference on Knowledge Discovery and Data Mining (KDD-96), Portland,
    Oregon, USA (1996), pp. 226–231.
    [13] Farzindar, A., and Khreich, W. A survey of techniques for event detection in twitter.
    Computational Intelligence 31, 1 (2015), 132–164.
    [14] Hadjieleftheriou, M., Kollios, G., Gunopulos, D., and Tsotras, V. J. Online
    discovery of dense areas in spatio-temporal databases. In Advances in Spatial and
    Temporal Databases, 8th International Symposium, SSTD 2003, Santorini Island, Greece,
    July 24-27, 2003, Proceedings (2003), pp. 306–324.
    [15] Hao, X., Meng, X., and Xu, J. Continuous density queries for moving objects. In Seventh
    ACM International Workshop on Data Engineering for Wireless and Mobile Access,
    Mobide 2008, June 13, 2008, Vancouver, British Columbia, Canada, Proceedings (2008),
    pp. 1–7.
    [16] Heendaliya, L., Wisely, M., Lin, D., Sarvestani, S. S., and Hurson, A. R.
    Influence-aware predictive density queries under road-network constraints. In Advances in
    Spatial and Temporal Databases - 14th International Symposium, SSTD 2015, Hong Kong,
    China, August 26-28, 2015. Proceedings (2015), pp. 80–97.
    [17] Hio, C., Bermingham, L., Cai, G., Lee, K., and Lee, I. A hybrid grid-based
    method for mining arbitrary regions-of-interest from trajectories. In Workshop on Machine
    Learning for Sensory Data Analysis, MLSDA ’13, Dunedin, New Zealand, December 2,
    2013 (2013), p. 5.
    [18] Isaksson, C., Dunham, M. H., and Hahsler, M. Sostream: Self organizing densitybased
    clustering over data stream. In Machine Learning and Data Mining in Pattern
    44
    Recognition - 8th International Conference, MLDM 2012, Berlin, Germany, July 13-20,
    2012. Proceedings (2012), pp. 264–278.
    [19] Jensen, C. S., Lin, D., Ooi, B. C., and Zhang, R. Effective density queries on
    continuouslymoving objects. In Proceedings of the 22nd International Conference on Data
    Engineering, ICDE 2006, 3-8 April 2006, Atlanta, GA, USA (2006), p. 71.
    [20] Lappas, T., Vieira, M. R., Gunopulos, D., and Tsotras, V. J. On the spatiotemporal
    burstiness of terms. PVLDB 5, 9 (2012), 836–847.
    [21] Lee, C., Yang, H., Chien, T., and Wen, W. A novel approach for event detection
    by mining spatio-temporal information on microblogs. In International Conference on
    Advances in Social Networks Analysis and Mining, ASONAM 2011, Kaohsiung, Taiwan,
    25-27 July 2011 (2011), pp. 254–259.
    [22] Li, R., Lei, K. H., Khadiwala, R., and Chang, K. C. TEDAS: A twitter-based
    event detection and analysis system. In IEEE 28th International Conference on Data
    Engineering (ICDE 2012), Washington, DC, USA (Arlington, Virginia), 1-5 April, 2012
    (2012), pp. 1273–1276.
    [23] Mamoulis, N. Spatial Data Management. Synthesis Lectures on Data Management.
    Morgan & Claypool Publishers, 2011.
    [24] Manolopoulos, Y., Nanopoulos, A., Papadopoulos, A. N., and Theodoridis,
    Y. R-Trees: Theory and Applications. Advanced Information and Knowledge Processing.
    Springer, 2006.
    [25] Ni, J., and Ravishankar, C. V. Pointwise-dense region queries in spatio-temporal
    databases. In Proceedings of the 23rd International Conference on Data Engineering, ICDE
    2007, The Marmara Hotel, Istanbul, Turkey, April 15-20, 2007 (2007), pp. 1066–1075.
    [26] Sakaki, T., Okazaki, M., and Matsuo, Y. Earthquake shakes twitter users: real-time
    event detection by social sensors. In Proceedings of the 19th International Conference on
    World Wide Web, WWW 2010, Raleigh, North Carolina, USA, April 26-30, 2010 (2010),
    pp. 851–860.
    45
    [27] Sugitani, T., Shirakawa, M., Hara, T., and Nishio, S. Detecting local events by
    analyzing spatiotemporal locality of tweets. In 27th International Conference on Advanced
    Information Networking and Applications Workshops, WAINA 2013, Barcelona, Spain,
    March 25-28, 2013 (2013), pp. 191–196.
    [28] Thom, D., Bosch, H., Koch, S., Worner, M., and Ertl, T. ¨ Spatiotemporal
    anomaly detection through visual analysis of geolocated twitter messages. In 2012 IEEE
    Pacific Visualization Symposium, PacificVis 2012, Songdo, Korea (South), February 28 -
    March 2, 2012 (2012), pp. 41–48.
    [29] Walther, M., and Kaisser, M. Geo-spatial event detection in the twitter stream.
    In Advances in Information Retrieval - 35th European Conference on IR Research, ECIR
    2013, Moscow, Russia, March 24-27, 2013. Proceedings (2013), pp. 356–367.
    [30] Wang, W., Yang, J., and Muntz, R. R. STING: A statistical information grid approach
    to spatial data mining. In VLDB’97, Proceedings of 23rd International Conference
    on Very Large Data Bases, August 25-29, 1997, Athens, Greece (1997), pp. 186–195.
    [31] Wen, J., Meng, X., Hao, X., and Xu, J. An efficient approach for continuous density
    queries. Frontiers of Computer Science 6, 5 (2012), 581–595.
    [32] Zaharieva, M., Zeppelzauer, M., and Breiteneder, C. Automated social event
    detection in large photo collections. In International Conference on Multimedia Retrieval,
    ICMR’13, Dallas, TX, USA, April 16-19, 2013 (2013), pp. 167–174.
    [33] Zhang, T., Ramakrishnan, R., and Livny, M. BIRCH: an efficient data clustering
    method for very large databases. In Proceedings of the 1996 ACM SIGMOD International
    Conference on Management of Data, Montreal, Quebec, Canada, June 4-6, 1996. (1996),
    pp. 103–114.

    下載圖示 校內:2018-08-30公開
    校外:2018-08-30公開
    QR CODE