簡易檢索 / 詳目顯示

研究生: 彭淑婷
Peng, Shu-Ting
論文名稱: Reissner 混合變分原理有限圓柱層殼元素法於功能性梯度材料中空圓柱殼承受軸、圍壓組合載重之三維挫屈分析
RMVT-based finite cylindrical layer methods for the three-dimensional buckling analysis of FGM circular hollow cylinders under combined axial compression and external pressure
指導教授: 吳致平
Wu, Chih-Ping
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 79
中文關鍵詞: 有限層殼方法變分理論挫屈混合理論功能性梯度材料圓柱殼組合載重.
外文關鍵詞: Finite layer methods, Variational principles, Buckling, Mixed theory, Functionally graded materials, Cylinders, Combined loads.
相關次數: 點閱:142下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文致力於以Reissner混合變分原理(the Reissner mixed variational theorem, RMVT)為起源,發展有限層殼元素法(finite cylindrical layer methods, FCLMs),並將其應用於多層疊合功能性材料簡支承中空圓柱殼受純軸壓、純圍壓、或軸圍壓組合載重作用下之三維線性挫屈分析。本文定義功能性梯度材料的材料性質在厚度方向呈冪級數變化。理論推演中,將圓柱殼分割為一系列的有限層殼元素,使用傅立葉函數與Lagrange多項式函數對各層內外表面之主要變數進行內插,且在階數的選用上各變數是獨立的,可選用線性、二階或三階函數分布來做厚度方向的參數模擬。本RMVT有限圓柱層殼元素法所求得之數值解,將與既有文獻中之二維或三維理論解進行精度與收斂率之檢核。此外,亦進一步探討材料性質、載重強度、正交比、圓柱殼長度與半徑比和半徑與厚度比等效應對臨界挫屈載重值之影響。

    The unified formulations of finite cylindrical layer methods (FCLMs) based on the Reissner mixed variational theorem (RMVT) are developed for the three-dimensional (3D) linear buckling analysis of simply-supported, multilayered functionally graded material (FGM) circular hollow cylinders and laminated composite ones under pure axial compression, external pressure, and combined axial compression with external pressure. The material properties of the FGM layer are assumed to obey the power-law distributions of the volume fraction of the constituents through the thickness coordinate. In these formulations, the cylinder is divided into a number of finite cylindrical layers, in which the trigonometric functions and Lagrange polynomials are used to interpolate the in- and out-of-surface variations of the primary variables of each individual layer, respectively, as well as the related order of each primary variable can be freely chosen, such as the layerwise linear, quadratic or cubic function distribution through the thickness coordinate. The accuracy and convergence of the RMVT-based FCLMs developed in this article are assessed by comparing their solutions with both the exact 3D and accurate two-dimensional (2D) solutions available in the literature. A parametric study for variations of the lowest critical load parameters with the material-property gradient index, and the load intensity, orthotropic, length-to-radius ratio, and radius-to-thickness ratios is carried out.

    目錄 英文摘要 I 中文摘要 II 誌謝 III 目錄 IV 表目錄 V 圖目錄 VI 第一章 緒論與研究動機 35 第二章 功能性材料中空圓柱殼挫屈前應力分析 39 2.1 挫屈前應力分析原理 39 2.2 不同載重狀態 42 2.2.1 單軸壓載重 42 2.2.2 純圍壓載重 43 2.2.3 組合載重 44 第三章 Reissner 混合變分理論 46 3.1 位移場與應力場之假設 46 3.2 Reissner 混合變分理論 49 3.3 Euler-Lagrange 方程式 52 第四章 數值範例與綜合討論 56 4.1 多層正交性材料中空圓柱殼受單軸壓載重作用 56 4.2 單層功能性材料中空圓柱殼受組合載重作用 59 4.3 三明治功能性材料中空圓柱殼受單軸壓載重作用 59 第五章 結論 62 參考文獻 63 Abstract I Abstract (in Chinese) II Acknowledgement (in Chinese) III Contents IV List of Tables V List of Figures VI Chapter 1 Introduction 1 Chapter 2 Pre-buckling state in a multilayered FGM cylinder 6 2.1 Pre-buckling state 6 2.2 Loading conditions 9 2.2.1 Pure axial compression 9 2.2.2 Pure external pressure 11 2.2.3 Combined axial compression and external pressure 12 Chapter 3 Reissner mixed variational theorem 14 3.1 Kinematic and kinetic assumptions 14 3.2 Reissner’s mixed variational theorem 18 3.3 Euler-Lagrange equations 21 Chapter 4 Illustrative examples 25 4.1 Multilayered orthotropic hollow cylinders under pure axial compression 25 4.2 FGM single-layered hollow cylinders under combined loads 28 4.3 FGM sandwich hollow cylinders under axial compression 30 Chapter 5 Concluding remarks 33 References 63

    [1] M. Kashtalyan, M. Menshykova, Three-dimensional elasticity solution for sandwich panels with a functionally graded core, Compos. Struct. 87 (2009) 36-43.
    [2] B. Woodward, M. Kashtalyan, Bending response of sandwich panels with graded core: 3D elasticity analysis, Mech. Adv. Mater. Struct. 17 (2010) 586-594.
    [3] M. Kashtalyan, Three-dimensional elasticity solution for bending of functionally graded rectangular plates, Eur. J. Mech. A/Solids 23 (2004) 853-864.
    [4] M. Kashtalyan, M. Menshykova, Effect of a functionally graded interlayer on three-dimensional elastic deformation of coated plates subjected to transverse loading, Compos. Struct. 89 (2009) 167-176.
    [5] A.K. Noor, W.S. Burton, Assessment of computational models for multilayered anisotropic plates, Compos. Struct. 14 (1990) 233-265.
    [6] A.K. Noor, W.S. Burton, C.W. Bert, Computational model for sandwich panels and shells, Appl. Mech. Rev. 49 (1996) 155-199.
    [7] A.K. Noor, W.S. Burton, Assessment of computational models for multilayered composite shells, Appl. Mech. Rev. 43 (1990) 67-97.
    [8] A.K. Noor, W.S. Burton, J.M. Peters, Assessment of Computational models for multilayered composite cylinders, Int. J. Solids and Struct. 27 (1991) 1269-1286.
    [9] E. Carrera, An assessment of mixed and classical theories on global and local response of multilayered orthotropic plates, Compos. Struct. 50 (2000) 183-198.
    [10] E. Carrera, Historical review of zig-zag theories for multilayered plates and shells, Appl. Mech. Rev. 56 (2003) 287-308.
    [11] E. Carrera, A. Ciuffreda, Bending of composites and sandwich plates subjected to localized lateral loadings: A comparison of various theories, Compos. Struct. 68 (2005) 185_202.
    [12] E. Carrera, A priori vs. a posteriori evaluation of transverse stresses in multilayered orthotropic plates, Compos. Struct. 48 (2000) 245-260.
    [13] E. Carrera, S. Brischetto, A survey with numerical assessment of classical and refined theories for the analysis of sandwich plates, Appl. Mech. Rev. 62 (2009) 1_17.
    [14] D.A. Saravanos, P.R. Heyliger, Mechanics and computational models for laminated piezoelectric beams, plates, and shells, Appl. Mech. Rev. 52 (1999) 305-320.
    [15] C.P. Wu, K.H. Chiu, Y.M. Wang, A review on the three-dimensional analytical approaches of multilayered and functionally graded piezoelectric plates and shells, CMC-Comput. Mater. Continua 18 (2008) 93_132.
    [16] G.J. Simitses, J.S. Anastasiadis, Buckling of axially-loaded, moderately-thick, cylindrical laminated shells, Compos. Eng. 1 (1991) 375-391.
    [17] J.S. Anastasiadis, G.J. Simitses, Buckling of pressure-loaded, long, shear deformable, cylindrical laminated shells, Compos. Struct. 23 (1993) 221-231.
    [18] J.S. Anastasiadis, A. Tabiei, G.J. Simitses, Instability of moderately, thick, laminated, cylindrical shells under combined axial compression and pressure, Compos. Struct. 27 (1994) 367-378.
    [19] A.H. Sofiyev, N. Kuruoglu, M. Turkmen, Buckling of FGM hybrid truncated conical shells subjected to hydrostatic pressure, Thin-Walled Struct. 47 (2009) 61_72.
    [20] A.H. Sofiyev, The buckling of FGM truncated conical shells subjected to combined axial tension and hydrostatic pressure, Compos. Struct. 92 (2010) 488-498.
    [21] A.H. Sofiyev, Buckling analysis of FGM circular shells under combined loads and resting on the Pasternak type elastic foundation, Mech. Res. Commun. 37 ( 2010) 539-544.
    [22] H.S. Shen, T.Y. Chen, Buckling and postbuckling behaviour of cylindrical shells under combined external pressure and axial compression, Thin-Walled Struct. 12 (1991) 321-334.
    [23] Z.M. Li, H.S. Shen, Postbuckling of shear-deformable anisotropic laminated cylindrical shells under axial compression, Int. J. Struct. Stability and Dyn. 8 (2008) 389_414.
    [24] H.S. Shen, Postbuckling analysis of cylindrical shells under combined external liquid pressure and axial compression, Thin-Walled Struct. 25 (1996) 297_317.
    [25] D. Hui, I.H.Y. Du, Initial postbuckling behavior of imperfect, antisymmetric cross-ply cylindrical shells under torsion, J. Appl. Mech. 54 (1987) 174-180.
    [26] K.P. Soldatos, Nonlinear analysis of transverse shear deformable laminated composite cylindrical shells_Part I: Derivation of governing equations, J. Press. Vess. Tech. 114 (1992) 105-109.
    [27] K.P. Soldatos, Nonlinear analysis of transverse shear deformable laminated composite cylindrical shells_Part II: Buckling of axially compressed cross-ply circular and oval cylinders, J. Press. Vess. Tech. 114 (1992) 110-114.
    [28] K.P. Soldatos, Buckling of shear deformable antisymmetric angle-ply laminated cylindrical panels under axial compression, J. Press. Vess. Tech. 114 (1992) 353-357.
    [29] G.J. Simitses, Buckling of moderately thick laminated cylindrical shells: A review, Compos. B Eng. 27 (1996)581-587.
    [30] J.S. Anastasiadis, A. Tabiei, G.J. Simitses, Instability of moderately thick, laminated cylindrical shells under combined axial compression and pressure, Compos. Struct. 27 (1994) 367-378.
    [31] G.A. Kardomateas, Bifurcation of equilibrium in thick orthotropic cylindrical shells under axial compression, J. Appl. Mech. 62 (1995) 43_52.
    [32] G.A. Kardomateas, Buckling of thick orthotropic cylindrical shells under external pressure, J. Appl. Mech. 60 (1993) 195_202.
    [33] Y.S. Kim, G.A. Kardomateas, A. Zureick, Buckling of thick orthotropic cylindrical shells under torsion, J. Appl. Mech. 66 (1999) 41_50.
    [34] G.A. Kardomateas, Benchmark three-dimensional elasticity solutions for the buckling of thick orthotropic cylindrical shells, Compos. B Eng. 27B (1996) 569-580.
    [35] K.P. Soldatos, J.Q. Ye, Three-dimensional static, dynamic, thermoelastic and buckling analysis of homogeneous and laminated composite cylinders, Compos. Struct. 29 (1994) 131-143.
    [36] J.Q. Ye, K.P. Soldatos, Three-dimensional buckling analysis of laminated composite hollow cylinders and cylindrical panels, Int. J. Solids Struct. 32 (1995) 1949-1962.
    [37] J. Fan, J.Q. Ye, Exact solutions of buckling for simply supported thick laminates, Compos. Struct. 24 (1993) 23-28.
    [38] J.Q. Ye, Buckling analysis of angle-ply multilayered long hollow cylinders, J. Eng. Mech. 125 (1999) 964-969.
    [39] C.P. Wu, C.W. Chen, Elastic buckling of multilayered anisotropic conical shells, J. Aerospace Eng. 14 (2001) 29_36.
    [40] C.P. Wu, S.J. Chiu, Thermoelastic buckling of laminated composite conical shells, J. Thermal Stresses 24 (2001) 881_901.
    [41] C.P. Wu, S.J. Chiu, Thermally induced dynamic instability of laminated composite conical shells, Int. J. Solids Struct. 39 (2002) 3001-3021.
    [42] E. Carrera, M. Soave, Use of functionally graded material layers in a two-layered pressure vessel, J. Press. Vess. Tech. 133 (2011) 1_11.
    [43] M.D. Ottavio, E. Carrera, Variable-kinematics approach for linearized buckling analysis of laminated plates and shells, AIAA J. 48 (2010) 1987-1996.
    [44] Y.K. Cheung, C.P. Jiang, Finite layer method in analysis of piezoelectric composite laminates, Comput. Methods in Appl. Mech. Eng. 191 (2001) 879_901.
    [45] G. Akhras, W.C. Li, Three-dimensional static, vibration and stability analysis of piezoelectric composite plates using a finite layer method, Smart Mater. Struct. 16 (2007) 561-569.
    [46] G. Akhras, W.C. Li, Three-dimensional thermal buckling analysis of piezoelectric composite plates using the finite layer method, Smart Mater. Struct. 17 (2008) 1_8.
    [47] G. Akhras, W.C. Li, Three-dimensional stability analysis of piezoelectric antisymmetric angle-ply laminates using finite layer method, J. Intell. Mater. Sys. Struct. 21 (2010) 719-727.
    [48] C.P. Wu, H.Y. Li, The RMVT- and PVD-based finite layer methods for the three-dimensional analysis of multilayered composite and FGM plates, Compos. Struct. 92 (2010) 2476-2496.
    [49] C.P. Wu, H.Y. Li, RMVT- and PVD-based finite layer methods for the quasi-3D free vibration analysis of multilayered composite and FGM plates, CMC-Comput. Mater. Continua 19 (2010) 155-198.
    [50] C.P. Wu, C.H. Kuo, A unified formulation of PVD-based finite cylindrical layer methods for functionally graded material sandwich cylinders, Appl. Math. Modeling (2012) doi:10.1016/j.apm.2012.03.025.
    [51] C.P. Wu, Y.C. Chang, A unified formulation of RMVT-based finite cylindrical layer methods for sandwich circular hollow cylinders with an embedded FGM layer, Compos. Part B: Eng. (2012) doi:10.1016/j.compositesb.2012.01.084.
    [52] A.W. Leissa, Buckling and postbuckling theory for laminated composite plates, in: Turvey GJ, Marshall IH. (Eds), Buckling and postbuckling of composite plates, London: Chapman and Hall (1995).
    [53] K.P. Soldatos, V.P. Hadjigeorgiou, Three-dimensional solution of the free vibration problem of homogeneous isotropic cylindrical shells and panels, J. Sound Vib. 137 (1990) 369-384.
    [54] C.P. Wu, T.C. Tsai, Exact solutions of functionally graded piezoelectric material sandwich cylinders by a modified Pagano method, Appl. Math. Modeling 36 (2012) 1910-1930.
    [55] C.P. Wu, R.Y. Jiang, The 3D coupled analysis of FGPM circular hollow sandwich cylinders under thermal loads, J. Intell. Mater. Sys. Struct. 22 (2011) 691-712.
    [56] A.K. Noor, J.M. Peters, Stress, vibration, and buckling of multilayered cylinders, J. Struct. Eng. 115 (1989) 69-88.
    [57] A.K. Noor, J.M. Peters, Finite element buckling and postbuckling solutions for multilayered composite panels, Finite Elements in Analysis and Design 15 (1994) 343-67.
    [58] A.K. Noor, J.J.H. Starnes, J.M. Peters, Thermomechanical buckling and postbuckling of multilayered composite panels, Composite Structures 23 (1993) 233-51.
    [59] A.K. Noor, J.M. Peters, Thermomechanical buckling of multilayered composite plates, Journal of Engineering Mechanics 118 (1992) 351-66.
    [60] H.S. Shen, P. Zhou, T.Y. Chen, Postbuckling analysis of stiffened cylindrical shells under combined external pressure and axial compression, Thin-Walled Structures 15 (1993) 43-63.
    [61] A.H. Sofiyev, Vibration and stability of composite cylindrical shells containing a FG layer subjected to various loads. Structural Engineering and Mechanics 27 (2007) 365-91.
    [62] A.H. Shen, Postbuckling analysis of pressure-loaded functionally graded cylindrical shells in thermal environments, Engineering Structures 25 (2003) 487-97.
    [63] T. Vodenitcharova, P. Ansourian, Buckling of circular cylindrical shells subject to uniform lateral pressure, Engineering Structures 18 (1996) 604-14.
    [64] P. Khazaeinejad, M.M. Najafizadeh, J. Jenabi, On the buckling of functionally graded cylindrical shells under combined external pressure and axial compression, Journal of Pressure Vessel Technology 132 (2010) 064501-1-6.
    [65] G.A. Kardomateas, M.S. Philobos, Buckling of thick orthotropic cylindrical shells under combined external pressure and axial compression, AIAA Journal 33 (1995) 1946-53.
    [66] A.K. Noor, W.S. Burton, Three-dimensional solutions for the free vibrations and buckling of thermally stressed multilayered angle-ply composite plates, Journal of Applied Mechanics 59 (1992) 868-77.
    [67] A.K. Noor, W.S. Burton, Three-dimensional solutions for thermal buckling of multilayered anisotropic plates, Journal of Engineering Mechanics 118 (1992) 683-701.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE