研究生: |
蘇柏勝 Su, Po-Sheng |
---|---|
論文名稱: |
三角化平衡通量法使用多重圖型處理器與MPI解尤拉方程式 Development of Triangular Equilibrium Flux Method Using Multiple Graphics Processing Unit Acceleration with MPI for the Euler Equations |
指導教授: |
李汶樺
Matthew R. Smith |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 139 |
中文關鍵詞: | 計算流體力學 、有限體積法 、三角化平衡通量法 、平衡通量法 、平行計算 、MPI 、圖型處理器 、MPI-CUDA |
外文關鍵詞: | Computational fluid dynamics (CFD), Finite Volume Method, Triangular Equilibrium Flux Method (TEFM), Equilibrium Flux Method (EFM), Parallel Computing, MPI, Graphics Processing Unit (GPU), MPI-CUDA |
相關次數: | 點閱:152 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
有限體積法(FVM)的應用在計算流體力學中有普遍增加的趨勢。其中有許多方法專注於通量計算,像是早期的平衡通量法(Equilibrium Flux Method, EFM),其通量計算是經由積分速度機率分佈函數而取得。然而,在數值計算中會產生指數函數與誤差函數,在計算上這不僅費時並且還有可能導致截斷誤差的發生。本研究的目的在於探討三角化平衡通量法(Triangular Equilibrium Flux Method, TEFM),此方法利用較為簡單的分佈函數總和近似馬克斯威爾-波茲曼速度機率分佈,進而取代原本計算昂貴的方程式,並使用MPI與A系列的AMD APU於平行計算中。為了要進一步提高計算效能,使用多重圖型處理器(MPI-CUDA)平行模式以達更高的模擬效率。透過已存在的數值模擬結果,來驗證一階與二階空間精準度的差別與正確性。
Kinetic-theory based Finite Volume Methods (FVM) have become increasingly common in Computational Fluid Dynamics (CFD). Many of these methods focus on computation of fluxes through integrating a velocity probability distribution function, such as the early Equilibrium Flux Method (EFM). However, analytical computation of these moments results in the exponential function and error function which is not only time-consuming but may also introduce error through truncation. The purpose of this study is to investigate an alternative – the Triangular Equilibrium Flux Method (TEFM) which uses the sum of simpler distribution functions to approximate the Maxwell-Boltzmann equilibrium velocity probability distribution function – applied to parallel computing using MPI with a specific focus on the A-series of AMD APU’s. To further enhance the performance, the hybrid MPI-CUDA parallelization paradigm is employed with multiple GPUs to achieve higher simulation efficiency. Furthermore, several benchmarks are used to verify both first and second order numerical results
[1] Toro E.F., “Riemann Solvers and Numerical Methods for Fluid Dynamics”, Springer, Berlin, 2009.
[2] Sod G.A., “A Survey of Serval Finite Difference Methods for Systems of Nonlinear Hyperbolic Conservation Laws”, J. Comp. Phys., Vol. 27, pp. 1-31, 1978.
[3] C ̌ada M. and Torrilhon M., “Compact Third-Order Limiter Functions for Finite Volume Methods”, J. Comp. Phys., Vol. 228, pp. 4118-4145, 2009.
[4] Schulz-Rinne C.W., Collins J.P., and H.M. Glaz, “Numerical Solution of the Riemann Problem for Two-Dimensional Gas Dynamics”, SIAM J. Sci Compt., Vol. 14, pp. 1394-1414, 1993.
[5] LeVeque R.J., “Wave Propagation Algorithms for Multidimensional Hyperbolic Systems”, J. Comp. Phys., Vol. 131, pp. 327-353, 1997.
[6] Ferguson A., Smith M.R. and Wu J.-S., “Accurate True Direction Solutions to the Euler Equations Using a Uniform Distribution Equilibrium Method”, CMES: Computer Modeling in Engineering & Sciences, Vol. 63, No. 1, 2010.
[7] Macrossan M.N., “The Equilibrium Flux Method for the Calculation of Flows with Non-equilibrium Chemical Reactions”, J, Comp. Phys., Vol. 80, pp. 204-231., 1989.
[8] Roe P.L., “Characteristic-Based Schemes for the Euler Equations”, Ann. Rev. Fluid Mech. Vol. 18, pp. 337-365, 1986.
[9] Van Leer B., “Towards the Ultimate Conservative Difference Scheme III. Upstream-Centered Finite-Difference Schemes for Ideal Compressible Flow”, J. Comp. Phys., Vol. 23, Issue 3, pp. 263-275, 1977.
[10] Su C.-C., Smith M.R., Kuo F.-A., Wu J.-S., Hsieh C.-W., Tseng K.-C., “Large-scale simulations on multiple Graphics Processing Units (GPUs) for the direct simulation Monte Carlo method”, J. Comp. Phys., Vol. 231, pp. 7932-7958, 2012.
[11] Chen Y.-C., Smith M.R., Ferguson A., “Analysis of the Second Order Accurate Uniform Equilibrium Flux Method and its graphics processing unit acceleration”, Journal of Computers and Fluids, 110: pp. 9-18, 2015.
[12] Versteeg H.K., Malalaserkera W., “An introduction to computational fluid dynamics The finite volume method”, Longman Scientific & Technical, 1995.
[13] Cebeci T., Shao J.P., Kafyeke F. and Laurendeau E., “Computational Fluid Dynamics for Engineers From Panel to Navier-Stokes Methods with Computer Programs”. Horizons Publishing Inc., California, 2005.
[14] C ̌ada M. and Torrilhon M., “Compact Third-Order Limiter Functions for Finite Volume Methods”, J. Comp. Phys., Vol. 288, pp. 4118-4145, 2009.
[15] Hirsch, Charles. “Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics: The Fundamentals of Computational Fluid Dynamics.” Butterworth-Heinemann, 2007.
[16] Smith M.R., “The True Direction Equilibrium Flux Method and its Application”, The University of Queensland, 2008.
[17] Pullin D.I., “Direct Simulation Methods for Compressible Inviscid Ideal-Gas Flow”, J. Comp. Phys., Vol. 34, pp. 231-244, 1980.
[18] Rusanov V.V., “The Calculation of the Interaction of Non-stationary Shock Waves and Obstacles”, J. Comput. Math. Phys. USSR, Vol. 1, pp. 267-279, 1961.
[19] Smith M.R., Macrossan M.N. and Abdel-jawad M.M., “Effects of Direction Decoupling in Flux Calculation in Euler Solvers”, J. Comp. Phys., Vol. 227, pp. 4142-4161, 2008.
[20] Harten A., “High Resolution Schemes for Hyperbolic Conservation Laws” , J. Comp. Phys., Vol. 49, pp. 357-393, 1983.
[21] Smith M.R., “Introduction to GPU and Multi-Core Computation”, 2014.
[22] Amdahl G.M., “Validity of the Single Processor Approach to Achieving Large-Scale Computing Capabilities”, AFIPS Conference Proceedings, Vol. 30, pp. 483-485, 1967.
[23] Gustafson J.L., “Reevaluating Amdahl’s Law”, Communications of the ACM, Vol. 31, Number 5, pp. 532-533, 1988.
[24] Sweby P.K., “High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws”, SIAM J. Numer. Anal., Vol. 21, pp. 995-1011, 1984.
[25] Lax P.D. and Wendroff B., “Systems of Conservation Laws”, Comm. Pure Appl. Math., Vol. 13, pp. 217-237, 1960.
[26] Van Leer B., “Towards the Ultimate Conservative Difference Scheme II. Monotonicity and Conservation Combined in a Second Order Scheme”, J. Comp. Phys., Vol. 14, pp. 361-370, 1974.
[27] Pacheco, Peter S. “Parallel programming with MPI. Morgan Kaufmann”, 1997.
[28] Hwang, Kai, Jack Dongarra, and Geoffrey C. Fox. Distributed and cloud computing: from parallel processing to the internet of things. Morgan Kaufmann, 2013.
[29] Benzi, John; Damodaran, M., “Parallel Three Dimensional Direct Simulation Monte Carlo for Simulating Micro Flows”. Parallel Computational Fluid Dynamics 2007: Implementations and Experiences on Large Scale and Grid Computing. Parallel Computational Fluid Dynamics. Springer. p. 95.