簡易檢索 / 詳目顯示

研究生: 吳健愷
Wu, Jian-Kai
論文名稱: 乙二醇協助銀奈米線自行組裝形成銀奈米網之研究
A study of self-assembled silver nanonet via ethylene glycol (EG)-assisted route
指導教授: 彭洞清
Perng, Dung-Ching
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 72
中文關鍵詞: 銀奈米線奈米線自組裝銀奈米網透明導電膜
外文關鍵詞: Ag nanowire, nanowire assembly, transparent conductive film
相關次數: 點閱:97下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究藉由乙二醇溶液幫助銀奈米線自行組裝形成銀奈米網,並加熱自行組裝的銀奈米網使其聯結,最後,將聯結後的銀奈米網製備於透明導電膜上。本實驗主要可分為兩大部份,第一部分使用兩種添加乙二醇的方法,幫助銀奈米線自行組裝,並探討這兩種方法的效果以及自行組裝的可能機制及原理。第二大部份則是將自行組裝好的銀奈米網退火使銀奈米線互相熔接在一起,並將其應用於透明導電膜上。
    由第一部份的實驗結果可知:先噴灑乙二醇溶液於基板上,再滴銀奈米線溶液,乙二醇將會與銀奈米線溶液混合,當開始低溫加熱後,由於酒精溶液易蒸發,將會驅使存在其內的銀奈米線移動,也會驅使乙二醇移動,而當銀奈米線碰上不易蒸發的乙二醇溶液時,將會被阻擋下來,等到乙二醇周圍都被銀奈米線所圍繞後,將會形成排列好、分佈佳的銀奈米網。另外,先噴灑含PVP的乙二醇溶液,再滴銀奈米線溶液,更能有效地讓銀奈米線自行組裝形成銀奈米網。
    第二部份的實驗則是將自行組裝好的銀奈米網,隨著其銀奈米網密度的不同,調整退火加熱的時間進行銀奈米線之熔接,並將聯結及熔接好的銀奈米網上濺鍍一層AZO薄膜,並量測其片電阻和穿透率。用320°C退火,直接滴銀奈米線溶液至基板只需10分鐘就可使銀奈米線熔接在一起;如果基板有先噴灑EG溶液則需11分鐘;但是如果基板有先噴灑含有PVP之EG溶液則需要31分鐘才能熔接銀奈米線。目前製備之樣品中,AZO薄膜鑲嵌有熔接之銀奈米網,以穿透率為58.15%時片電阻為41.27 Ω/sq最佳,它的片電阻約只有原先的2.53%,因為熔接後之銀奈米線直徑變粗變密,是導致穿透率大幅降低的主要原因。

    In this thesis, silver nanowires (NWs) self-assembled to Ag nanonet via ethylene glycol (EG)-assisted route is studied. Two different approaches in adding EG solution to assist Ag NWs self-assembling to form Ag nanonet were conducted. The possible mechanism and theory of Ag nanonet self-assembling are discussed. The self-assembled Ag nanonet was annealed to form fused junctions in those overlap area between Ag NWs using quartz tube furnace. Thermal budget of this annealing to form fused junctions in Ag nanonet is studied. Sheet resistance and degree of AZO film’s transparency with or without Ag nanonet embedded are evaluated.
    The first part of results indicate that spray EG solution and then drip Ag NW solution on a substrate do help the self-assembling. When Ag NW solution drip onto the substrate with EG drops, it will slightly mix with EG drops. When the substrate temperature slowly increases to 40°C, the ethanol solvent evaporates first. This evaporation helps Ag NWs move slightly, the movement stops at the edges of the EG drops. (Note: EG does not evaporate easily at 40°C.) At the moment when the entire edges of EG drops surrounded by Ag NWs, the self-assembled Ag nanonet can be formed. In addition, if the EG drops contains poly(vinylpyrrolidone) (PVP), it is more effective to help the self-assembling.
    At 320°C, the annealing time required to fuse Ag NWs depends on the density of the Ag NWs in the nanonet and also depends on the method used for self-assembling. The time needed for fusing NWs is 10 min if drip Ag NW solution directly on the substrate. It takes 11 min to fuse together if the substrate was pre-sprayed with EG drops, and takes 31 min to fuse if the pre-sprayed EG drops contain small amount of PVP. The sheet resistance of the AZO film with fused Ag nanonet embedded has much lower sheet resistance than that without. In one particular case, an AZO film with fused Ag nanonet embedded exhibits transmittance of 58.15% and sheet resistance of 41.27 Ω/sq. The AZO sheet resistance with fused Ag nanonet embedded is about only 2.53% of that without one. The fused NW of the nanonet has a larger diameter than the original NW and results in lower transmittance.

    Abstract (in Chinese) I Abstract (in English) III Acknowledgements V Contents VI Table Captions IX Figure Captions X Chapter 1 Introduction 1 1.1 Background 1 1.2 Transparent Conductive Oxide 2 1.2.1 ITO Thin Film 2 1.2.2 AZO (Al-doped ZnO) Transparent Conductive Oxide 3 1.2.3 Metal Nanonet 4 1.3 Motivation 6 1.4 Theory and Paper Review 7 1.4.1 Synthesis of Silver Nanowires by Polyol Process 7 1.4.2 Assembly of Nanowire 9 1.4.2.1 Nanowire Assembly by Langmuir−Blodgett Technique 10 1.4.2.2 Nanowire Assembly by Evaporation-Induced Method 12 1.4.2.3 Nanowire Assembly by Water-Assisted Method 13 1.4.2.4 Nanowire Assembly by Fluidic Channel 15 1.4.2.5 Nanowire Assembly by Spreading Volatile Solvent 16 1.4.2.6 Nanowire Assembly by Glass Capillary 18 Chapter 2 Experimental Scheme 19 2.1 Materials 19 2.1.1 Substrate 19 2.1.2 Chemicals 19 2.1.3 Targets for sputtering 19 2.1.4 Gas 19 2.2 Process Equipments 20 2.2.1 RF/DC Sputtering System 20 2.2.2 Annealing Quartz Tube Furnace 21 2.2.3 Syringe Pump 22 2.2.4 Centrifuge 24 2.3 Analytical Instruments 25 2.3.1 Four-point Probe 25 2.3.2 Scanning Electron Microscope 26 2.3.3 Surface Profiler 27 2.3.4 Optical Microscope 28 2.3.5 UV-VIS-NIR Spectrophotometer 29 Chapter 3 Experimental Method 30 3.1 Experimental Flow 30 3.2 Sample Preparation 33 3.2.1 Clean of Sample 33 3.2.2 Fabrication of Silver Nanowires 33 3.2.2.1 Synthesis 33 3.2.2.2 Centrifugation 36 3.2.3 Drip-coating Ag NWs 37 Chapter 4 Results and Discussion 38 4.1 Dispersion of Ag NWs 38 4.2 The Investigation of Ag Nanonet 38 4.3 Addition of EG Solution 43 4.3.1 The Method 1 of Spraying EG Solution and then Dripping Ag NW Solution 45 4.3.2 The Method 2 of Spraying EG Solution and then Separately Dripping Ag NW Solution 48 4.3.3 The Method 3 of Spraying EG Solution of PVP and then Dripping Ag NW Solution 51 4.3.4 The Method 4 of Spraying EG Solution of PVP and then Separately Dripping Ag NW Solution 54 4.4 Fabrication, Measurement, and Analysis of Transparent Conductive Thin Film with Ag Nanonet 58 4.4.1 Fabrication of Transparent Conductive Thin Film 58 4.4.2 Measurement and Analysis of Sheet resistance and Transparency of Transparent Conductive Thin Film 64 Chapter 5 Conclusions 67 References 68

    [1]R. S. Wagner and W. C. Ellis, “The vapor-liquid-solid mechanism of crystal growth and its application to silicon,” Trans. Metall. Soc. AIME, vol. 233, pp. 1053–1064, 1965.
    [2]S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter,” Nature, vol. 363, no. 6430, pp. 603–605, 1993.
    [3]B. B. D. Busbee, S. O. Obare, and C. J. Murphy, “An Improved Synthesis of High-Aspect-Ratio Gold Nanorods,” Adv. Mater., vol. 15, no. 5, pp. 414–416, 2003.
    [4]Y. Sun, B. Gates, B. Mayers, and Y. Xia, “Crystalline Silver Nanowires by Soft Solution Processing,” Nano Lett., vol. 2, no. 2, pp. 165–168, 2002.
    [5]H. Guo, N. Lin, Y. Chen, Z. Wang, Q. Xie, T. Zheng, N. Gao, S. Li, J. Kang, D. Cai, and D.-L. Peng, “Copper nanowires as fully transparent conductive electrodes.,” Sci. Rep., vol. 3, no. 2323, pp. 1-6, 2013.
    [6]Y. Zhang, T. Ichihashi, E. Landree, F. Nihey, and S. Iijima, “Heterostructures of Single-Walled Carbon Nanotubes and Carbide Nanorods,” Science., vol. 285, no. 5434, pp. 1719–1722, 1999.
    [7]Q. Wan, P. Feng, and T. H. Wang, “Vertically aligned tin-doped indium oxide nanowire arrays: Epitaxial growth and electron field emission properties,” Appl. Phys. Lett., vol. 89, no. 12, pp. 87–90, 2006.
    [8]B. Cao and W. Cai, “From ZnO nanorods to nanoplates: Chemical bath deposition growth and surface-related emissions,” J. Phys. Chem. C, vol. 112, no. 3, pp. 680–685, 2008.
    [9]M. J. Alam and D. C. Cameron, “Optical and electrical properties of transparent conductive ITO thin films deposited by sol-gel process,” Thin Solid Films, vol. 377-378, no. 0, pp. 455–459, 2000.
    [10]C. G. Choi, K. No, W.-J. Lee, H.-G. Kim, S. O. Jung, W. J. Lee, W. S. Kim, S. J. Kim, and C. Yoon, “Effects of oxygen partial pressure on the microstructure and electrical properties of indium tin oxide film prepared by d.c. magnetron sputtering,” Thin Solid Films, vol. 258, no. 1–2, pp. 274–278, 1995.
    [11]B. H. Lee, I. G. Kim, S. W. Cho, and S.-H. Lee, “Effect of process parameters on the characteristics of indium tin oxide thin film for flat panel display application,” Thin Solid Films, vol. 302, no. 1–2, pp. 25–30, 1997.
    [12]Y. H. Tak, K. B. Kim, H. G. Park, K. H. Lee, and J. R. Lee, “Criteria for ITO (indium-tin-oxide) an organic light thin film as the bottom electrode of emitting diode,” Thin Solid Films, vol. 411, no. 1, pp. 12–16, 2002.
    [13]H. Schmidt, H. Flügge, T. Winkler, T. Bülow, T. Riedl, and W. Kowalsky, “Efficient semitransparent inverted organic solar cells with indium tin oxide top electrode,” Appl. Phys. Lett., vol. 94, no. 24, pp. 1–4, 2009.
    [14]R. K. Shukla, A. Srivastava, A. Srivastava, and K. C. Dubey, “Growth of transparent conducting nanocrystalline Al doped ZnO thin films by pulsed laser deposition,” J. Cryst. Growth, vol. 294, no. 2, pp. 427–431, 2006.
    [15]J. Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett., vol. 8, no. 2, pp. 689–692, 2008.
    [16]V. Scardaci, R. Coull, P. E. Lyons, D. Rickard, and J. N. Coleman, “Spray deposition of highly transparent, low-resistance networks of silver nanowires over large areas,” Small, vol. 7, no. 18, pp. 2621–2628, 2011.
    [17]D.-S. Leem, A. Edwards, M. Faist, J. Nelson, D. D. C. Bradley, and J. C. de Mello, “Efficient organic solar cells with solution-processed silver nanowire electrodes.,” Adv. Mater., vol. 23, no. 38, pp. 4371–5, 2011.
    [18]L. Hu, H. S. Kim, J. Lee, P. Peumans, and Y. Cui, “Scalable Coating and Properties of transparent Ag nanowire electrodes,” ACS Nano, vol. 4, no. 5, pp. 2955–2963, 2010.
    [19]J.-W. Liu, J.-L. Wang, W.-R. Huang, L. Yu, X.-F. Ren, W.-C. Wen, and S.-H. Yu, “Ordering Ag nanowire arrays by a glass capillary: a portable, reusable and durable SERS substrate.,” Sci. Rep., vol. 2, no. 987, pp. 1-7, 2012.
    [20]A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir − Blodgett Silver Nanowire Monolayers for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy,” Nano Lett., vol. 3, no. 9, pp. 1229–1233, 2003.
    [21]P. Lee, J. Lee, H. Lee, J. Yeo, S. Hong, K. H. Nam, D. Lee, S. S. Lee, and S. H. Ko, “Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network,” Adv. Mater., vol. 24, no. 25, pp. 3326–3332, 2012.
    [22]Z. Li, J. Kang, Z. Liu, C. Du, X. Lee, X. Li, L. Wang, X. Yi, H. Zhu, and G. Wang, “Enhanced performance of GaN-based light-emitting diodes with graphene/Ag nanowires hybrid films,” AIP Adv., vol. 3, no. 4, pp. 1–7, 2013.
    [23]Z. Yu, Q. Zhang, L. Li, Q. Chen, X. Niu, J. Liu, and Q. Pei, “Highly flexible silver nanowire electrodes for shape-memory polymer light-emitting diodes,” Adv. Mater., vol. 23, no. 5, pp. 664–668, 2011.
    [24]A. Kim, Y. Won, K. Woo, C. H. Kim, and J. Moon, “Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells,” ACS Nano, vol. 7, no. 2, pp. 1081–1091, 2013.
    [25]S. Nam, M. Song, D.-H. Kim, B. Cho, H. M. Lee, J.-D. Kwon, S.-G. Park, K.-S. Nam, Y. Jeong, S.-H. Kwon, Y. C. Park, S.-H. Jin, J.-W. Kang, S. Jo, and C. S. Kim, “Ultrasmooth, extremely deformable and shape recoverable Ag nanowire embedded transparent electrode.,” Sci. Rep., vol. 4, no. 4788, pp. 1-7, 2014.
    [26]K.-W. Seo, J.-H. Lee, N. G. Cho, S. J. Kang, H.-K. Kim, S.-I. Na, H.-W. Koo, and T.-W. Kim, “Simple brush painted Ag nanowire network on graphene sheets for flexible organic solar cells,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 32, no. 061201, pp. 1-6, 2014.
    [27]T. Tokuno, M. Nogi, M. Karakawa, J. Jiu, T. T. Nge, Y. Aso, and K. Suganuma, “Fabrication of silver nanowire transparent electrodes at room temperature,” Nano Res., vol. 4, no. 12, pp. 1215–1222, 2011.
    [28]A. Afal, S. Coskun, and H. Emrah Unalan, “All solution processed, nanowire enhanced ultraviolet photodetectors,” Appl. Phys. Lett., vol. 102, no. 043503, pp. 1-5, 2013.
    [29]Z. Yang, M. Wang, X. Song, G. Yan, Y. Ding, and J. Bai, “High-performance ZnO/Ag Nanowire/ZnO composite film UV photodetectors with large area and low operating voltage,” J. Mater. Chem. C, vol. 2, no. 21, pp. 4312–4319, 2014.
    [30]H. Tian, D. Xie, Y. Yang, T. L. Ren, Y. X. Lin, Y. Chen, Y. F. Wang, C. J. Zhou, P. G. Peng, L. G. Wang, and L. T. Liu, “Flexible, ultrathin, and transparent sound-emitting devices using silver nanowires film,” Appl. Phys. Lett., vol. 99, no. 23507, pp. 1-4, 2011.
    [31]W. Hu, X. Niu, R. Zhao, and Q. Pei, “Elastomeric transparent capacitive sensors based on an interpenetrating composite of silver nanowires and polyurethane,” Appl. Phys. Lett., vol. 102, no. 8, pp. 6–11, 2013.
    [32]J. Lee, P. Lee, H. Lee, D. Lee, S. S. Lee, and S. H. Ko, “Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel,” Nanoscale, vol. 4, no. 20, p. 6408, 2012.
    [33]S. C. B. Mannsfeld, A. Sharei, S. Liu, M. E. Roberts, I. McCulloch, M. Heeney, and Z. Bao, “Highly efficient patterning of organic single-crystal transistors from the solution phase,” Adv. Mater., vol. 20, no. 21, pp. 4044–4048, 2008.
    [34]Yugang Sun and Younan Xia, “Large-Scale Synthesis of Uniform Silver Nanowires Through a Soft,Self-Seeding,Polyol Process,” Adv. Mater., no. 11, pp. 833–837, 2002.
    [35]Y. Sun, B. Mayers, T. Herricks, and Y. Xia, “Polyol synthesis of uniform silver nanowires: A plausible growth mechanism and the supporting evidence,” Nano Lett., vol. 3, no. 7, pp. 955–960, 2003.
    [36]B. Wiley, Y. Sun, B. Mayers, and Y. Xia, “Shape-controlled synthesis of metal nanostructures: The case of silver,” Chem. - A Eur. J., vol. 11, no. 2, pp. 454–463, 2005.
    [37]K. E. Korte, S. E. Skrabalak, and Y. Xia, “Rapid synthesis of silver nanowires through a CuCl- or CuCl2-mediated polyol process,” J. Mater. Chem., vol. 18, no. 4, pp. 437-441, 2008.
    [38]W. C. Zhang, X. L. Wu, H. T. Chen, Y. J. Gao, J. Zhu, G. S. Huang, and P. K. Chu, “Self-organized formation of silver nanowires, nanocubes and bipyramids via a solvothermal method,” Acta Mater., vol. 56, no. 11, pp. 2508–2513, 2008.
    [39]S. Acharya, A. B. Panda, N. Belman, S. Efrima, and Y. Golan, “A semiconductor-nanowire assembly of ultrahigh junction density by the Langmuir-Blodgett technique,” Adv. Mater., vol. 18, no. 2, pp. 210–213, 2006.
    [40]D. Whang, S. Jin, Y. Wu, and C. M. Lieber, “Large-scale hierarchical organization of nanowire arrays for integrated nanosystems,” Nano Lett., vol. 3, no. 9, pp. 1255–1259, 2003.
    [41]Z. Wang, R. Bao, X. Zhang, X. Zhang, X. Ou, C. S. Lee, and J. C. Chang, “One-step self-assembly, alignment, and patterning of organic semiconductor nanowires by controlled evaporation of confined microfluids,” Angew. Chemie - Int. Ed., vol. 50, no. 12, pp. 2811–2815, 2011.
    [42]Y. Bi, H. Hu, and G. Lu, “Highly ordered rectangular silver nanowire monolayers: water-assisted synthesis and galvanic replacement reaction with HAuCl(4).,” Chem. Commun. (Camb)., vol. 46, no. 4, pp. 598–600, 2010.
    [43]Y. Huang, X. Duan, Q. Wei, and C. M. Lieber, “Directed assembly of one-dimensional nanostructures into functional networks.,” Science, vol. 291, no. 5504, pp. 630–633, 2001.
    [44]H. Dai, R. Ding, M. Li, J. Huang, Y. Li, and M. Trevor, “Ordering Ag nanowire arrays by spontaneous spreading of volatile droplet on solid surface,” Sci. Rep., vol. 4, no. 6742, pp. 1-5, 2014.

    無法下載圖示 校內:2020-07-20公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE