簡易檢索 / 詳目顯示

研究生: 黃騰賢
Huang, Teng-Shien
論文名稱: 新交聯型聚苯咪唑薄膜於高溫型質子交換膜燃料電池性能研究
Performance Study of Novel Cross-linked Polybenzimidazole Membranes for High Temperature Proton Exchange Membrane Fuel Cells
指導教授: 許聯崇
Hsu, Lien-Chung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 81
中文關鍵詞: 交聯型聚苯咪唑高溫型質子交換膜燃料電池抗氧化性長時間測試
外文關鍵詞: cross-linked polybenzimidazole, high-temperature PEMFC, Fenton’s test, long-term durability test
相關次數: 點閱:129下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用3,3’-diaminobenzidine和2,2-bis (4-carboxyphenyl)-hexaflouopropane 與5-hydroxyisophthalic acid,成功地合成出含羫基的六氟聚苯咪唑共聚物 (hydroxyl fluorine-containing polybenzimidazole, PBI30OH),除了利用龐大的側鏈基團提升溶解性外,更含有百分之三十的羫基作為交聯點,添加1,4-phenylene diisocyanate 作為交聯劑,製備出不同交聯程度的共價鍵交聯聚苯咪唑薄膜,並進行機械性質、抗氧化性質、熱性質等測試。研究顯示,交聯薄膜具有穩定的熱性質,隨交聯度的增加,機械性質與抗氧化性質均獲提升。
      薄膜進行磷酸摻雜後,始具備質子傳導的能力,而磷酸摻雜量隨交聯度的增加略有下降,在160 ℃下,薄膜均有0.02 S/cm以上的質子導電度。在單電池測試部分,分為十四天開關測試與三十天穩定測試。在開關測試 (160 ℃下負載電流200 mA/cm2操作12小時而後關閉燃料降回室溫),交聯薄膜維持穩定的開路電壓,顯示能防止燃料的穿越。而在三十天穩定測試 (160 ℃下負載電流200 mA/cm2操作720小時),交聯薄膜輸出電壓衰退速度為0.032 mV/h,優於未交聯薄膜的電壓衰退速度0.184 mV/h,同時能維持較低的磷酸流失量。

    In this work, hydroxyl fluorine-containing polybenzimidazole (PBI30OH), a new type of PBI copolymer, was synthesized successfully. The solubility of polymer increased due to the large pendant groups. Thirty percent of hydroxyl groups in PBI can be used this way for crosslinking. Cross-linked membranes, prepared with 1,4-phenylene diisocyanate as crosslinker, exhibited great mechanical properties, oxidative stability and also thermal properties. The acid content of phosphoric acid doped membranes decreased slightly with crosslinking, but all membranes could reach 0.02 S/cm proton conductivity at 160 ℃. Membrane electrode assemblies were fabricated with a size of 4 cm2 and a Pt loading of 1 mg/cm2. Compared with the pristine membrane, the cross-linked membrane showed lower open circuit voltage decay rate and proved more stable in startup and shutdown tests (operated at 160 ℃ with 200 mA/cm2 for 12 h and then kept off for 12 h at room temperature). In long-term durability tests (operated at 160 ℃ with 200 mA/cm2 for 720 h ), the cross-linked membrane showed a lower cell voltage decay rate of 0.032 mV/h and exhausted less phosphoric acid, showing higher stability during operation.

    摘要 I Extended Abstract II 誌謝 XII 總目錄 XIII 表目錄 XVI 圖目錄 XVII 第一章 緒論 1 1.1 前言 1 1.2 研究背景 4 1.3 研究動機與目的 6 第二章 文獻回顧與原理 8 2.1 質子交換膜燃料電池簡介 8 2.2 質子交換膜燃料電池原理 11 2.3 質子傳導原理 14 2.4 質子交換膜性質提升 15 2.5 單電池測試與衰退機制 18 2.5.1 單電池衰退機制 18 2.5.2 電池長時間穩定性測試 20 第三章 實驗方法及步驟 22 3.1 實驗材料 22 3.2 實驗儀器 22 3.3 實驗步驟 23 3.3.1 Polybenzimidazole共聚物 (PBI30OH) 合成 23 3.3.2 PBI30OH交聯薄膜製備 24 3.4 結構鑑定 25 3.4.1 傅利葉轉換紅外線光譜分析 (FT-IR) 25 3.4.2 核磁共振光譜分析 (1H-NMR) 26 3.5 薄膜性質分析 27 3.5.1 固有黏度量測 (Inherent viscosity) 27 3.5.2 熱重損失分析儀 (TGA) 27 3.5.3 機械性質分析 (Mechanical properties) 28 3.5.4 動態熱機械分析 (DTMA) 28 3.5.5 抗氧化分析 (Oxidative stability tests) 29 3.6 質子導電度量測 29 3.6.1 薄膜磷酸摻雜 29 3.6.2 質子導電度量測 (Proton conductivity) 30 3.7 膜電極製備 (Membrane electrode assemblies, MEAs) 33 3.7.1 觸媒漿料配製與塗佈 33 3.7.2 熱壓 33 3.8 單電池測試 34 3.8.1 單電池組裝 34 3.8.2 單電池效能測試 36 3.8.3 十四天開關測試 (Startup and shutdown tests) 36 3.8.4 三十天穩定測試 (Long-term durability tests) 36 第四章 結果與討論 37 4.1 合成結構鑑定與性質分析 37 4.1.1 PBI30OH合成 37 4.1.2 PBI30OH交聯薄膜製備 39 4.1.3 固有黏度 (Inherent viscosity) 42 4.1.4 傅利葉轉換紅外線光譜分析 (FT-IR) 42 4.1.5 PBI30OH之核磁共振光譜分析 (1H-NMR) 44 4.2 交聯薄膜性質分析 45 4.2.1 熱性質分析(TGA) 45 4.2.2 動態熱機械分析 (DTMA) 47 4.2.3 抗氧化分析 (Oxidative stability tests) 49 4.2.4 機械性質分析 (Mechanical properties) 51 4.2.5 薄膜摻雜磷酸之分析 (Acid content analysis) 52 4.2.6 質子導電度分析 (Proton conductivity) 55 4.3 PBI30OH薄膜與PBI30OH-60薄膜單電池元件測試分析 57 4.3.1 單電池元件效能分析 57 4.3.2 單電池十四天開關測試 (Startup and shutdown tests) 61 4.3.3 單電池三十天穩定測試 (Long-term durability tests) 64 第五章 結論與未來展望 69 第六章 參考文獻 71

    [1] "IEA/OECD Key World Energy Statistics " (2016).
    [2] "BP Statistical Review of World Energy " (2016).
    [3] U. Bossel, "The birth of the fuel cell. European Fuel Cell Forum, Oberrohrdorf," (2000).
    [4] J. Larminie, A. Dicks, and M. S. McDonald, "Fuel cell systems explained," Vol. 2: J. Wiley Chichester, UK, (2003).
    [5] "Renewable energy systems," Fuel Cell Today(2012).
    [6] H.-G. Haubold, T. Vad, H. Jungbluth, and P. Hiller, "Nano structure of NAFION: a SAXS study," Electrochimica Acta, Vol. 46, pp. 1559-1563 (2001).
    [7] H. Vogel and C. Marvel, "Polybenzimidazoles, new thermally stable polymers," Journal of Polymer Science, Vol. 50, pp. 511-539 (1961).
    [8] H. Vogel and C. Marvel, "Polybenzimidazoles. II," Journal of Polymer Science Part A: General Papers, Vol. 1, pp. 1531-1541 (1963).
    [9] W. Shi and L. A. Baker, "Imaging heterogeneity and transport of degraded Nafion membranes," RSC Adv., Vol. 5, pp. 99284-99290 (2015).
    [10] J. A. Asensio, E. M. Sánchez, and P. Gómez-Romero, "Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest," Chemical Society Reviews, Vol. 39, pp. 3210 (2010).
    [11] S. Wang, G. Zhang, M. Han, H. Li, Y. Zhang, J. Ni, W. Ma, M. Li, J. Wang, Z. Liu, L. Zhang, and H. Na, "Novel epoxy-based cross-linked polybenzimidazole for high temperature proton exchange membrane fuel cells," International Journal of Hydrogen Energy, Vol. 36, pp. 8412-8421 (2011).
    [12] T. Søndergaard, L. N. Cleemann, H. Becker, D. Aili, T. Steenberg, H. A. Hjuler, L. Seerup, Q. Li, and J. O. Jensen, "Long-term durability of HT-PEM fuel cells based on thermally cross-linked polybenzimidazole," Journal of Power Sources, Vol. 342, pp. 570-578 (2017).
    [13] T.-H. Tang, P.-H. Su, Y.-C. Liu, and T. L. Yu, "Polybenzimidazole and benzyl-methyl-phosphoric acid grafted polybenzimidazole blend crosslinked membrane for proton exchange membrane fuel cells," International Journal of Hydrogen Energy, Vol. 39, pp. 11145-11156 (2014).
    [14] P. Ngamsantivongsa, H.-L. Lin, and T. L. Yu, "Crosslinked ethyl phosphoric acid grafted polybenzimidazole and polybenzimidazole blend membranes for high-temperature proton exchange membrane fuel cells," Journal of Polymer Research, Vol. 23, (2016).
    [15] C.-H. Shen, L.-c. Jheng, S. L.-c. Hsu, and J. Tse-Wei Wang, "Phosphoric acid-doped cross-linked porous polybenzimidazole membranes for proton exchange membrane fuel cells," Journal of Materials Chemistry, Vol. 21, pp. 15660 (2011).
    [16] R. Marschall, M. Sharifi, and M. Wark, "Proton conductivity of imidazole functionalized ordered mesoporous silica: Influence of type of anchorage, chain length and humidity," Microporous and Mesoporous Materials, Vol. 123, pp. 21-29 (2009).
    [17] J.-C. LASSEGUES, "20 Mixed inorganic-organic systems: the acid/polymer blends," Proton Conductors: Solids, Membranes and Gels-Materials and Devices, Vol. 2, pp. 311 (1992).
    [18] S. J. Paddison, K.-D. Kreuer, and J. Maier, "About the choice of the protogenic group in polymer electrolyte membranes: Ab initio modelling of sulfonic acid, phosphonic acid, and imidazole functionalized alkanes," Physical Chemistry Chemical Physics, Vol. 8, pp. 4530-4542 (2006).
    [19] M. Schuster, T. Rager, A. Noda, K. D. Kreuer, and J. Maier, "About the Choice of the Protogenic Group in PEM Separator Materials for Intermediate Temperature, Low Humidity Operation: A Critical Comparison of Sulfonic Acid, Phosphonic Acid and Imidazole Functionalized Model Compounds," Fuel Cells, Vol. 5, pp. 355-365 (2005).
    [20] J. Wainright, J. T. Wang, D. Weng, R. Savinell, and M. Litt, "Acid‐doped polybenzimidazoles: a new polymer electrolyte," Journal of The Electrochemical Society, Vol. 142, pp. L121-L123 (1995).
    [21] Q. Li and J. O. Jensen, "Membranes for High Temperature PEMFC Based on Acid‐Doped Polybenzimidazoles," Membranes for Energy Conversion, Volume 2, pp. 61-96 (2008).
    [22] S. Qing, W. Huang, and D. Yan, "Synthesis and characterization of thermally stable sulfonated polybenzimidazoles," European polymer journal, Vol. 41, pp. 1589-1595 (2005).
    [23] S. Yu and B. C. Benicewicz, "Synthesis and Properties of Functionalized Polybenzimidazoles for High-Temperature PEMFCs," Macromolecules, Vol. 42, pp. 8640-8648 (2009).
    [24] S. Subianto, "Recent advances in polybenzimidazole/phosphoric acid membranes for high-temperature fuel cells," Polymer International, Vol. 63, pp. 1134-1144 (2014).
    [25] E. G. S. P. Inc., " Fuel Cell Handbook (Fifth Edition)," Science Applications International Corporation, (2000).
    [26] K.-D. Kreuer, "Proton conductivity: materials and applications," Chemistry of materials, Vol. 8, pp. 610-641 (1996).
    [27] N. Agmon, "The grotthuss mechanism," Chemical Physics Letters, Vol. 244, pp. 456-462 (1995).
    [28] R. Bouchet and E. Siebert, "Proton conduction in acid doped polybenzimidazole," Solid State Ionics, Vol. 118, pp. 287-299 (1999).
    [29] R. Bouchet, S. Miller, M. Duclot, and J. Souquet, "A thermodynamic approach to proton conductivity in acid-doped polybenzimidazole," Solid State Ionics, Vol. 145, pp. 69-78 (2001).
    [30] J. Jayakody, S. Chung, L. Durantino, H. Zhang, L. Xiao, B. Benicewicz, and S. Greenbaum, "NMR studies of mass transport in high-acid-content fuel cell membranes based on phosphoric acid and polybenzimidazole," Journal of The Electrochemical Society, Vol. 154, pp. B242-B246 (2007).
    [31] Y.-L. Ma, J. Wainright, M. Litt, and R. Savinell, "Conductivity of PBI membranes for high-temperature polymer electrolyte fuel cells," Journal of The Electrochemical Society, Vol. 151, pp. A8-A16 (2004).
    [32] A. Panchenko, H. Dilger, E. Möller, T. Sixt, and E. Roduner, "In situ EPR investigation of polymer electrolyte membrane degradation in fuel cell applications," Journal of Power Sources, Vol. 127, pp. 325-330 (2004).
    [33] M. J. Ariza, D. J. Jones, and J. Rozière, "Role of post-sulfonation thermal treatment in conducting and thermal properties of sulfuric acid sulfonated poly (benzimidazole) membranes," Desalination, Vol. 147, pp. 183-189 (2002).
    [34] J. Gillham, "Polymer structure: cross-linking of a polybenzimidazole," Science, Vol. 139, pp. 494-495 (1963).
    [35] H.-L. Lin, Y.-C. Chou, T. L. Yu, and S.-W. Lai, "Poly(benzimidazole)-epoxide crosslink membranes for high temperature proton exchange membrane fuel cells," International Journal of Hydrogen Energy, Vol. 37, pp. 383-392 (2012).
    [36] N. Xu, X. Guo, J. Fang, H. Xu, and J. Yin, "Synthesis of novel polybenzimidazoles with pendant amino groups and the formation of their crosslinked membranes for medium temperature fuel cell applications," Journal of Polymer Science Part A: Polymer Chemistry, Vol. 47, pp. 6992-7002 (2009).
    [37] M. Li, G. Zhang, H. Zuo, M. Han, C. Zhao, H. Jiang, Z. Liu, L. Zhang, and H. Na, "End-group cross-linked polybenzimidazole blend membranes for high temperature proton exchange membrane," Journal of membrane science, Vol. 423, pp. 495-502 (2012).
    [38] D. Jones and J. Rozière, "Inorganic/organic composite membranes," Handbook of fuel cells, (2003).
    [39] T. Ogoshi and Y. Chujo, "Organic–inorganic polymer hybrids prepared by the sol-gel method," Composite Interfaces, Vol. 11, pp. 539-566 (2005).
    [40] F. Chu, B. Lin, B. Qiu, Z. Si, L. Qiu, Z. Gu, J. Ding, F. Yan, and J. Lu, "Polybenzimidazole/zwitterion-coated silica nanoparticle hybrid proton conducting membranes for anhydrous proton exchange membrane application," Journal of Materials Chemistry, Vol. 22, pp. 18411-18417 (2012).
    [41] S. Wang, F. Dong, and Z. Li, "Proton-conducting membrane preparation based on SiO2-riveted phosphotungstic acid and poly (2, 5-benzimidazole) via direct casting method and its durability," Journal of Materials Science, Vol. 47, pp. 4743-4749 (2012).
    [42] S. D. Knights, K. M. Colbow, J. St-Pierre, and D. P. Wilkinson, "Aging mechanisms and lifetime of PEFC and DMFC," Journal of Power Sources, Vol. 127, pp. 127-134 (2004).
    [43] M. Inaba, "Durability of electrocatalysts in polymer electrolyte fuel cells," ECS Transactions, Vol. 25, pp. 573-581 (2009).
    [44] K. Kinoshita, J. Lundquist, and P. Stonehart, "Potential cycling effects on platinum electrocatalyst surfaces," Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 48, pp. 157-166 (1973).
    [45] P. Yu, M. Pemberton, and P. Plasse, "PtCo/C cathode catalyst for improved durability in PEMFCs," Journal of Power Sources, Vol. 144, pp. 11-20 (2005).
    [46] H. R. Kunz, "Support material for a noble metal catalyst and method for making the same," ed: Google Patents, 1977.
    [47] J. Liao, J. Yang, Q. Li, L. N. Cleemann, J. O. Jensen, N. J. Bjerrum, R. He, and W. Xing, "Oxidative degradation of acid doped polybenzimidazole membranes and fuel cell durability in the presence of ferrous ions," Journal of Power Sources, Vol. 238, pp. 516-522 (2013).
    [48] G. Liu, H. Zhang, J. Hu, Y. Zhai, D. Xu, and Z.-g. Shao, "Studies of performance degradation of a high temperature PEMFC based on H 3 PO 4-doped PBI," Journal of Power Sources, Vol. 162, pp. 547-552 (2006).
    [49] Y. Zhai, H. Zhang, D. Xing, and Z.-G. Shao, "The stability of Pt/C catalyst in H3PO4/PBI PEMFC during high temperature life test," Journal of Power Sources, Vol. 164, pp. 126-133 (2007).
    [50] Y. Oono, A. Sounai, and M. Hori, "Long-term cell degradation mechanism in high-temperature proton exchange membrane fuel cells," Journal of Power Sources, Vol. 210, pp. 366-373 (2012).
    [51] Y. Oono, T. Fukuda, A. Sounai, and M. Hori, "Influence of operating temperature on cell performance and endurance of high temperature proton exchange membrane fuel cells," Journal of Power Sources, Vol. 195, pp. 1007-1014 (2010).
    [52] Y. Oono, A. Sounai, and M. Hori, "Influence of the phosphoric acid-doping level in a polybenzimidazole membrane on the cell performance of high-temperature proton exchange membrane fuel cells," Journal of Power Sources, Vol. 189, pp. 943-949 (2009).
    [53] C. Wannek, B. Kohnen, H. F. Oetjen, H. Lippert, and J. Mergel, "Durability of ABPBI-based MEAs for High Temperature PEMFCs at Different Operating Conditions," Fuel Cells, Vol. 8, pp. 87-95 (2008).
    [54] S. Yu, L. Xiao, and B. Benicewicz, "Durability Studies of PBI‐based High Temperature PEMFCs," Fuel Cells, Vol. 8, pp. 165-174 (2008).
    [55] S.-W. Chuang and S. L.-C. Hsu, "Synthesis and properties of a new fluorine-containing polybenzimidazole for high-temperature fuel-cell applications," Journal of Polymer Science Part A: Polymer Chemistry, Vol. 44, pp. 4508-4513 (2006).
    [56] S.-W. Chuang, S. L.-C. Hsu, and Y.-H. Liu, "Synthesis and properties of fluorine-containing polybenzimidazole/silica nanocomposite membranes for proton exchange membrane fuel cells," Journal of membrane science, Vol. 305, pp. 353-363 (2007).
    [57] C.-H. Shen and S. L.-c. Hsu, "Synthesis of novel cross-linked polybenzimidazole membranes for high temperature proton exchange membrane fuel cells," Journal of membrane science, Vol. 443, pp. 138-143 (2013).
    [58] Q. Li, "Water uptake and acid doping of polybenzimidazoles as electrolyte membranes for fuel cells," Solid State Ionics, Vol. 168, pp. 177-185 (2004).
    [59] N. Brooks, R. Duckett, J. Rose, I. Ward, and J. Clements, "An NMR study of absorbed water in polybenzimidazole," Polymer, Vol. 34, pp. 4038-4042 (1993).
    [60] H. Stutz, K. H. Illers, and J. Mertes, "A generalized theory for the glass transition temperature of crosslinked and uncrosslinked polymers," Journal of Polymer Science Part B: Polymer Physics, Vol. 28, pp. 1483-1498 (1990).
    [61] S. Mane, S. Ponrathnam, and N. Chavan, "Effect of chemical cross-linking on properties of polymer microbeads: A review," Can. Chem. Trans, Vol. 3, pp. 473-485 (2015).
    [62] R. A. Gaudiana and R. T. Conley, "Weak‐link versus active carbon degradation routes in the oxidation of aromatic heterocyclic systems," Journal of Polymer Science Part B: Polymer Letters, Vol. 7, pp. 793-801 (1969).
    [63] G. Hübner and E. Roduner, "EPR investigation of HO/radical initiated degradation reactions of sulfonated aromatics as model compounds for fuel cell proton conducting membranes," Journal of Materials Chemistry, Vol. 9, pp. 409-418 (1999).
    [64] M. Inaba, H. Yamada, J. Tokunaga, and A. Tasaka, "Effect of agglomeration of Pt/C catalyst on hydrogen peroxide formation," Electrochemical and Solid-State Letters, Vol. 7, pp. A474-A476 (2004).
    [65] T. Kinumoto, M. Inaba, Y. Nakayama, K. Ogata, R. Umebayashi, A. Tasaka, Y. Iriyama, T. Abe, and Z. Ogumi, "Durability of perfluorinated ionomer membrane against hydrogen peroxide," Journal of Power Sources, Vol. 158, pp. 1222-1228 (2006).
    [66] J. Liao, Q. Li, H. Rudbeck, J. O. Jensen, A. Chromik, N. Bjerrum, J. Kerres, and W. Xing, "Oxidative degradation of polybenzimidazole membranes as electrolytes for high temperature proton exchange membrane fuel cells," Fuel Cells, Vol. 11, pp. 745-755 (2011).
    [67] P. Noye, Q. Li, C. Pan, and N. J. Bjerrum, "Cross‐linked polybenzimidazole membranes for high temperature proton exchange membrane fuel cells with dichloromethyl phosphinic acid as a cross‐linker," Polymers for advanced technologies, Vol. 19, pp. 1270-1275 (2008).
    [68] C.-H. Shen, S. L.-c. Hsu, E. Bulycheva, and N. Belomoina, "Polybenzimidazole/1H-imidazole-4-sulfonic acid hybrid membranes for high-temperature proton exchange membranes fuel cells," Journal of membrane science, Vol. 399, pp. 11-15 (2012).
    [69] P. Ngamsantivongsa, H.-L. Lin, and T. L. Yu, "Properties and fuel cell applications of polybenzimidazole and ethyl phosphoric acid grafted polybenzimidazole blend membranes," Journal of membrane science, Vol. 491, pp. 10-21 (2015).
    [70] D. Mecerreyes, H. Grande, O. Miguel, E. Ochoteco, R. Marcilla, and I. Cantero, "Porous polybenzimidazole membranes doped with phosphoric acid: highly proton-conducting solid electrolytes," Chemistry of materials, Vol. 16, pp. 604-607 (2004).
    [71] S. Suarez, N. K. Kodiweera, P. Stallworth, S. Yu, S. G. Greenbaum, and B. C. Benicewicz, "Multinuclear NMR study of the effect of acid concentration on ion transport in phosphoric acid doped poly(benzimidazole) membranes," J Phys Chem B, Vol. 116, pp. 12545-51 (2012).
    [72] S. Galbiati, A. Baricci, A. Casalegno, G. Carcassola, and R. Marchesi, "On the activation of polybenzimidazole-based membrane electrode assemblies doped with phosphoric acid," International Journal of Hydrogen Energy, Vol. 37, pp. 14475-14481 (2012).
    [73] M. Boaventura and A. Mendes, "Activation procedures characterization of MEA based on phosphoric acid doped PBI membranes," International Journal of Hydrogen Energy, Vol. 35, pp. 11649-11660 (2010).
    [74] C. Wannek, I. Konradi, J. Mergel, and W. Lehnert, "Redistribution of phosphoric acid in membrane electrode assemblies for high-temperature polymer electrolyte fuel cells," International Journal of Hydrogen Energy, Vol. 34, pp. 9479-9485 (2009).
    [75] Z. Qi and S. Buelte, "Effect of open circuit voltage on performance and degradation of high temperature PBI–H 3 PO 4 fuel cells," Journal of Power Sources, Vol. 161, pp. 1126-1132 (2006).
    [76] P. Ferreira, Y. Shao-Horn, D. Morgan, R. Makharia, S. Kocha, and H. Gasteiger, "Instability of Pt∕ C electrocatalysts in proton exchange membrane fuel cells a mechanistic investigation," Journal of The Electrochemical Society, Vol. 152, pp. A2256-A2271 (2005).
    [77] H.-L. Lin, Y.-C. Chou, T. L. Yu, and S.-W. Lai, "Poly (benzimidazole)-epoxide crosslink membranes for high temperature proton exchange membrane fuel cells," International Journal of Hydrogen Energy, Vol. 37, pp. 383-392 (2012).
    [78] L.-C. Jheng, W. J.-Y. Chang, S. L.-C. Hsu, and P.-Y. Cheng, "Durability of symmetrically and asymmetrically porous polybenzimidazole membranes for high temperature proton exchange membrane fuel cells," Journal of Power Sources, Vol. 323, pp. 57-66 (2016).
    [79] J. Zhang, "PEM fuel cell electrocatalysts and catalyst layers: fundamentals and applications," Springer Science & Business Media, (2008).
    [80] J. Yang, Q. Li, L. N. Cleemann, J. O. Jensen, C. Pan, N. J. Bjerrum, and R. He, "Crosslinked hexafluoropropylidene polybenzimidazole membranes with chloromethyl polysulfone for fuel cell applications," Advanced Energy Materials, Vol. 3, pp. 622-630 (2013).
    [81] J. Yang, D. Aili, Q. Li, L. N. Cleemann, J. O. Jensen, N. J. Bjerrum, and R. He, "Covalently cross-linked sulfone polybenzimidazole membranes with poly(vinylbenzyl chloride) for fuel cell applications," ChemSusChem, Vol. 6, pp. 275-82 (2013).
    [82] S. Yu, L. Xiao, and B. C. Benicewicz, "Durability Studies of PBI‐based High Temperature PEMFCs," Fuel Cells, Vol. 8, pp. 165-174 (2008).
    [83] Y. Oono, A. Sounai, and M. Hori, "Prolongation of lifetime of high temperature proton exchange membrane fuel cells," Journal of Power Sources, Vol. 241, pp. 87-93 (2013).

    無法下載圖示 校內:2022-07-13公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE