簡易檢索 / 詳目顯示

研究生: 陳軒宇
Chen, Hsuan-yu
論文名稱: 核磁共振研究釔參雜LaCo2B2
NMR study of Y substitution effects in LaCo2B2
指導教授: 呂欽山
Lue, Chin-Shan
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 50
中文關鍵詞: 核磁共振超導體
外文關鍵詞: NMR, Superconductivity
相關次數: 點閱:126下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • LaCo2B2在過去的研究中,因具有類似鐵基超導體的ThCr2Si2-type結構,且透過Y與Fe參雜而在低溫(Tc~ 4 K)出現超導態而引起了廣泛討論。LaCo2B2和YCo2B2是具有金屬電導性與包利順磁性的材料。
    在本篇論文中,我們以核磁共振(NMR)的技術來量測LaCo2B2、 La0.9Y0.1Co2B2和YCo2B2的59Co和11B的NMR頻譜來討論各個樣品的線形、奈特位移及自旋晶格鬆弛時間。
    由自旋晶格鬆弛時間的分析可以推測LaCo2B2和YCo2B2的59Co及11B的態密度是相近的,可推測兩者具有類似的電子結構特性。而La0.9Y0.1Co2B2的結果顯示Y原子的參雜作用會大幅提高B 的 2p 態密度, 此結果可能是La0.9Y0.1Co2B2在低溫產生超導態的原因。

    In recent studies, LaCo2B2 has attracted lots of attentions because of crystallizing in an iron-based superconductor like ThCr2Si2-type structure and emerging bulk superconductivity (Tc~4 K) by doping Y or Fe atoms. LaCo2B2 and YCo2B2 have been reported as a material with metallic electrical conductivity and Pauli paramagnetic behavior. However, there is little experimental effort associated with their local electrical structure features. In this study, we report an observation in LaCo2B2, La0.9Y0.1Co2B2 and YCo2B2 by using 59Co and 11B nuclear magnetic resonance (NMR) measurements.
    The 59Co NMR isotropic knight shift (59Kiso) is positive and close to each other, revealing that the Co-4s electrons and the orbital term are the major source. In addition, the 11B NMR isotropic knight shift (11Kiso)indicates an enhanced trend in B-2s density of state (DOS) and the contribution from orbital term.
    With the spin-lattice relaxation rate (1/T1) analyses, we found a strong similarity in the DOS of 59Co and11BbetweenLaCo2B2 and YCo2B2, indicating the uniformity in the electronic structure properties. Moreover, for La0.9Y0.1Co2B2, the 1/T1 analyses revealed a highly uplifted in B-2p DOS owing to the Y substitution effect that may account for the appearance of superconductivity.

    ABSTRACT II 摘要 VI 致謝 VII 目錄 VIII 表目錄 IX 圖目錄 X 第一章 前言 1 第二章 核磁共振基本原理 2-1黎曼效應(ZEEMAN EFFECT) 4 2-3 奈特位移(KNIGHT SHIFT) 7 2-4 電四重極效應(ELECTRIC QUADRUPOLE EFFECT) 10 2-5 運動方程式 14 2-6 自旋晶格鬆弛時間 17 第三章 樣品配置與量測 3-1 樣品製備 21 3-2 X-RAY 量測 22 第四章 實驗方法 4-1 實驗儀器 23 4-2 核磁共振量測方法 26 第五章 實驗結果與討論 5-1X-RAY結果 28 5-2線形與四重極效應 30 5-3奈特位移 34 5-4自旋晶格鬆弛時間與費米能階態密度 38 第六章結論 46 參考文獻 48

    [1] Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, Journal of the American Chemical Society 130, 3296 (2008).
    [2] M. Rotter, M. Tegel, and D. Johrendt, Physical Review Letters 101, 107006 (2008).
    [3] F.-C. Hsu et al., Proceedings of the National Academy of Sciences of the United States of America 105, 14262 (2008).
    [4] Z.-A. Ren et al., Physical Review Letters 25, 2215 (2008).
    [5] X. H. Chen, T. Wu, G. Wu, R. H. Liu, H. Chen, and D. F. Fang, Nature 453, 761 (2008).
    [6] R. Zhi-An et al., EPL (Europhysics Letters) 83, 17002 (2008).
    [7] G. Lamura et al., Physical Review B 91, 024513 (2015).
    [8] K. Sasmal, B. Lv, B. Lorenz, A. M. Guloy, F. Chen, Y.-Y. Xue, and C.-W. Chu, Physical Review Letters 101, 107007 (2008).
    [9] S. Parasharam Maruti, M. Kiichi, K. Hijiri, E. Hiroshi, and I. Akira, Applied Physics Express 1, 081702 (2008).
    [10] O. U. Walter, M. T. Georgiy, K. V. Yogesh, A. M. Michael, and S. S. Athena, Journal of Physics: Condensed Matter 23, 365703 (2011).
    [11] X. C. Wang, Q. Q. Liu, Y. X. Lv, W. B. Gao, L. X. Yang, R. C. Yu, F. Y. Li, and C. Q. Jin, Solid State Communications 148, 538 (2008).
    [12] M. J. Pitcher, D. R. Parker, P. Adamson, S. J. C. Herkelrath, A. T. Boothroyd, R. M. Ibberson, M. Brunelli, and S. J. Clarke, Chemical Communications, 5918 (2008).
    [13] J. H. Tapp, Z. Tang, B. Lv, K. Sasmal, B. Lorenz, P. C. W. Chu, and A. M. Guloy, Physical Review B 78, 060505 (2008).
    [14] C. W. Chu et al., Physica C: Superconductivity 469, 326.
    [15] D. R. Parker, M. J. Pitcher, P. J. Baker, I. Franke, T. Lancaster, S. J. Blundell, and S. J. Clarke, Chemical Communications, 2189 (2009).
    [16] S. J. Zhang et al., EPL (Europhysics Letters) 88, 47008 (2009).
    [17] Z. Deng, X. C. Wang, Q. Q. Liu, S. J. Zhang, Y. X. Lv, J. L. Zhu, R. C. Yu, and C. Q. Jin, EPL (Europhysics Letters) 87, 37004 (2009).
    [18] G. Wang, M. Zhang, Z. Li, and Z. Yang, EPL (Europhysics Letters) 95, 17001 (2011).
    [19] A. Pandey et al., Physical Review B 88, 014526 (2013).
    [20] W. S. Lee et al., Nat Phys 10, 883 (2014).
    [21] H. Mizoguchi, T. Kuroda, T. Kamiya, and H. Hosono, Physical Review Letters 106, 237001 (2011).
    [22] Y. Wang, W. J. Ren, T. F. Duan, D. Li, J. Li, and Z. D. Zhang, Journal of Applied Physics 117, 17E116 (2015).
    [23] J. Shuai, X. Hui, X. Guofang, W. Cao, R. Zhi, F. Chunmu, D. Jianhui, X. Zhu’an, and C. Guanghan, Journal of Physics: Condensed Matter 21, 382203 (2009).
    [24] N. Bloembergen and T. J. Rowland, Acta Metallurgica 1, 731 (1953).
    [25] G. C. Carter, L. H. Bennett, and D. J. Kahan, Metallic shifts in NMR (Pergamon Press, 1977).
    [26] L. Gerven, Nuclear Magnetic Resonance in Solids (Springer US, 2013).
    [27] T. P. Das and E. L. Hahn, Nuclear quadrupole resonance spectroscopy (Academic Press, New York, 1958), Solid state physics. Supplement 1, ix, 223 p.
    [28] C. P. Slichter, Principles of Magnetic Resonance (Springer Berlin Heidelberg, 2013).
    [29] C. S. Lue, Y. T. Lin, and C. N. Kuo, Physical Review B 75, 075113 (2007).
    [30] A. H. Morrish, in The Physical Principles of Magnetism (John Wiley & Sons, Inc., 2001), pp. 149.
    [31] E. Fukushima and S. B. W. Roeder, Experimental Pulse NMR: A Nuts and Bolts Approach (Addison-Wesley, 1993).
    [32] T. Asada and K. Terakura, Journal of Physics F: Metal Physics 12, 1387 (1982).
    [33] T. Asada, K. Terakura, and T. Jarlborg, Journal of Physics F: Metal Physics 11, 1847 (1981).
    [34] J. Korringa, Physica 16, 601 (1950).
    [35] C. Kittel, Introduction to solid state physics (Wiley, 2005).
    [36] E. L. Hahn, Physical Review 80, 580 (1950).
    [37] P. Carretta and A. Lascialfari, NMR-MRI, μSR and Mössbauer Spectroscopies in Molecular Magnets (Springer Milan, 2007).
    [38] J. K. M. Sanders and B. K. Hunter, Modern NMR spectroscopy: a guide for chemists (Oxford University Press, 1987).
    [39] P. T. Callaghan, Principles of Nuclear Magnetic Resonance Microscopy (Clarendon Press, 1993).
    [40] R. E. Watson and L. H. Bennett, Physical Review B 15, 502 (1977).
    [41] K. Yoshimura, M. Mekata, M. Takigawa, Y. Takahashi, and H. Yasuoka, Physical Review B 37, 3593 (1988).
    [42] C. S. Lue, C. F. Chen, F.-K. Chiang, and M. W. Chu, Physical Review B 80, 174202 (2009).
    [43] W. Guangtao, Z. Minping, L. Zhen, and Y. Zongxian, EPL (Europhysics Letters) 95, 17001 (2011).
    [44] C. S. Lue and W. J. Lai, physica status solidi (b) 242, 1108 (2005).
    [45] C. S. Lue, Y. F. Tao, and T. H. Su, Physical Review B 78, 033107 (2008).
    [46] C. S. Lue, S. F. Wong, J. Y. Huang, H. L. Hsieh, H. Y. Liao, B. Ramachandran, and Y. K. Kuo, Journal of Applied Physics 113, 013710 (2013).
    [47] P. Wiecki, V. Ogloblichev, A. Pandey, D. C. Johnston, and Y. Furukawa, Physical Review B 91, 220406 (2015).
    [48] R. Mittal et al., Physical Review B 83, 054503 (2011).
    [49] M. N. Pfisterer, G, Anorganische Chemie, Organische Chemie 35, 703 (1980).

    下載圖示
    校外:立即公開
    QR CODE