| 研究生: |
鍾宜家 Chung, Yi-Chia |
|---|---|
| 論文名稱: |
阿拉伯芥 GTR1/NPF2.10 之生化定性與結構分析 Biochemical Characterization and Structural Analysis of Arabidopsis thaliana GTR1/NPF2.10 |
| 指導教授: |
林士鳴
Lin, Shih-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物科技與產業科學系 Department of Biotechnology and Bioindustry Sciences |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 硫代葡萄糖苷 、阿拉伯芥硫代葡萄糖苷轉運蛋白 1 /硝酸鹽/肽轉運蛋白 2.10 、酵母異源表達系統 、膜蛋白純化 、轉運活性測定 |
| 外文關鍵詞: | Glucosinolate transporter, Arabidopsis thaliana glucosinolate transporter 1/nitrate transporter 1/peptide transporter 2.10, Yeast heterologous expression, Membrane protein purification, Transport activity assay |
| 相關次數: | 點閱:66 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
硫代葡萄糖苷 (Glucosinolate) 是十字花科中的重要次生代謝產物,在植物防禦中起著重要作用。阿拉伯芥硫代葡萄糖苷轉運蛋白1 (AtGTR1) 屬於硝酸鹽轉運蛋白家族之成員,主要表現於花絲和維管束中可調控硫代葡萄糖苷在韌皮部中的含量。已知硫代葡萄糖苷由多種氨基酸合成可形成數十種的化學結構,然而目前 AtGTR1 針對受質多元結構之選擇辨識機制和受質運輸效能仍尚待釐清,生化定性和結構分析是回答這些問題的理想工具。在此研究中,我們建立了酵母菌表現系統來生產重組 AtGTR1,經兩步驟層析純化後其蛋白純度可達到90%。以負染色穿透式電子顯微鏡分析 AtGTR1 純化蛋白,顯示其分子構型大小十分均一,尺寸約為 7-9 nm,推測為形成同型二聚體。此外,我們測量了表現 AtGTR1 的酵母菌之硫代葡萄糖苷的轉運活性和受質選擇性,其分析結果表明 AtGTR1 可以轉運多種結構的硫代葡萄糖苷,並且其運輸效率與受質結構有關。本研究結合定點突變技術建立數個 AtGTR1 的突變株,並用以鑑定出受質運輸相關的關鍵位點。定點突變研究亦發現 T105 胺基酸之磷酸化修飾對於 AtGTR1 之生化特性可產生顯著影響。總結本研究在結構與生化功能方面之實驗結果,對於闡明 AtGTR1 的分子機制和硫代葡萄糖苷運輸的調節提供了新的證據。
Glucosinolates are important secondary metabolites in the Brassicaceae and plays an important role in plant defense. Arabidopsis thaliana Glucosinolate Transporter 1 (AtGTR1), a member of the nitrate transporter family, is mainly expressed in filaments and vascular tissues in Arabidopsis and regulates the glucosinolates level in phloem. Hundred types of glucosinolates are synthesized from a variety of amino acids in plants. However, the substrate selective mechanism and transport efficiency of AtGTR1 still remain unclear. Biochemical characterization and structural analysis would be ideal tools to answer these questions. In this study, we established a yeast expression system to produce recombinant AtGTR1, and the protein purity could achieve 90% after a two-step chromatographic purification. Negative-stain transmission electron microscopy analysis showed that purified AtGTR1 formed a homodimer conformation with a molecular size around 7-9 nm. In addition, we measured the glucosinolate transport activity and substrate selectivity of AtGTR1 that express in Saccharomyces cerevisiae. The results showed that AtGTR1 transported various types of substrates, and its transport efficiency is interrelated to the structure of the substrate. This study combined site-directed mutagenesis technology to establish several AtGTR1 mutant strains, and used to identify the key sites related to the substrate transport. Site-directed mutagenesis studies have also found that the phosphorylation modification of T105 amino acid can have a significant impact on the biochemical characteristic of AtGTR1. Taken together, the structural finding and biochemical studies provided the new evidence to clarify the molecular mechanism of AtGTR1 and the regulation of the glucosinolate homeostasis.
陳昱安,以蛋白結構探討坎氏弧菌抗原HSP60之免疫原性,國立成功大學生物科技與產業科學系碩士論文,2019。
Aduri, N.G., Prabhala, B.K., Ernst, H.A., Jørgensen, F.S., Olsen, L. and Mirza, O. Salt bridge swapping in the EXXERFXYY motif of proton-coupled oligopeptide transporters*. Journal of Biological Chemistry 290, 29931-29940, 2015.
Ann, S.E., Sones, K. and Fenwick, G. The quantitative analysis of glucosinolates in cruciferous vegetables, oilseeds and forage crops using high performance liquid chromatography. Fette, Seifen, Anstrichmittel 86, 228-231, 1984.
Atkin, A.L. Preparation of yeast cells for confocal microscopy. Confocal Microscopy Methods and Protocols, Springer Protocols, Germany, 131-139, 1999.
Blažević, I., Montaut, S., Burčul, F., Olsen, C.E., Burow, M., Rollin, P. and Agerbirk, N. Glucosinolate structural diversity, identification, chemical synthesis and metabolism in plants. Phytochemistry 169, 112-100, 2020.
Buchner, P. and Hawkesford, M.J. Complex phylogeny and gene expression patterns of members of the nitrate transporter 1/peptide transporter family (NPF) in wheat. Journal of Experimental Botany 65, 5697-5710, 2014.
Chen, S. and Halkier, B.A. Characterization of glucosinolate uptake by leaf protoplasts of Brassica napus*. Journal of Biological Chemistry 275, 22955-22960, 2000.
Chen, S., Petersen, B.L., Olsen, C.E., Schulz, A. and Halkier, B.A. Long-distance phloem transport of glucosinolates in Arabidopsis. Plant Physiology 127, 194-201, 2001.
Chhajed, S., Misra, B.B., Tello, N. and Chen, S. Chemodiversity of the glucosinolate-myrosinase system at the single cell type resolution. Frontiers in Plant Science 10, 1-11, 2019.
Cooper, T.A., Cardone, M.H. and Ordahl, C.P. Cis requirements for alternative splicing of the cardiac troponin T pre-mRNA. Nucleic Acids Research 16, 8443-8465, 1988.
Corratgé-Faillie, C. and Lacombe, B. Substrate (un)specificity of Arabidopsis NRT1/PTR FAMILY (NPF) proteins. Journal of Experimental Botany 68, 3107-3113, 2017.
Covitz, K.Y., Amidon, G.L. and Sadée, W. Membrane topology of the human dipeptide transporter, hPEPT1, determined by epitope insertions. Biochemistry 37, 15214-15221, 1998.
Dieffenbach, C., Lowe, T. and Dveksler, G. General concepts for PCR primer design. PCR Methods Application, Cold Spring Harbor Laboratory, United States, 30-37, 1993.
Doki, S., Kato, H.E., Solcan, N., Iwaki, M., Koyama, M., Hattori, M., Iwase, N., Tsukazaki, T., Sugita, Y., Kandori, H., Newstead, S., Ishitani, R. and Nureki, O. Structural basis for dynamic mechanism of proton-coupled symport by the peptide transporter POT. Proceedings of the National Academy of Sciences of the United States of America 110, 11343, 2013.
Doughty, K., Porter, A., Morton, A., Kiddle, G., Bock, C. and Wallsgrove, R. Variation in the glucosinolate content of oilseed rape (Brassica napus L.) leaves: II. Response to infection by Alternaria brassicae (Berk.) Sacc. Annals of Applied Biology 118, 469-477, 1991.
Drew, D. and Kim, H. Optimizing Saccharomyces cerevisiae induction regimes. Methods in Molecular Biology 866, 191-195, 2012.
Drew, D., Newstead, S., Sonoda, Y., Kim, H., von Heijne, G. and Iwata, S. GFP-based optimization scheme for the overexpression and purification of eukaryotic membrane proteins in Saccharomyces cerevisiae. Nature Protocols 3, 784-798, 2008.
Dujon, B. The yeast genome project: what did we learn? Trends in Genetics 12, 263-270, 1996.
Fieldsend, J. and Milford, G. Changes in glucosinolates during crop development in single- and double- low genotypes of winter oilseed rape (Brassica napus): II. Profiles and tissue‐water concentrations in vegetative tissues and developing pods. Annals of Applied Biology 124, 543-555, 1994.
Forte, J.G. and Reenstra, W.W. Plasma membrane proton pumps in animal cells. BioScience 35, 38-42, 1985.
Froger, A. and Hall, J.E. Transformation of plasmid DNA into E. coli using the heat shock method. Journal of Visualized Experiments 6, 253, 2007.
Gallagher, J.R., Kim, A.J., Gulati, N.M. and Harris, A.K. Negative-stain transmission electron microscopy of molecular complexes for image analysis by 2D class averaging. Current Protocols in Microbiology 54, 90, 2019.
Hagting, A., Velde, J., Poolman, B. and Konings, W.N. Membrane topology of the di- and tripeptide transport protein of lactococcus lactis. Biochemistry 36, 6777-6785, 1997.
Hermann, A. and Jeltsch, A. Methylation sensitivity of restriction enzymes interacting with GATC sites. BioTechniques 34, 924-930, 1993.
Ishida, M., Hara, M., Fukino, N., Kakizaki, T. and Morimitsu, Y. Glucosinolate metabolism, functionality and breeding for the improvement of Brassicaceae vegetables. Breeding Science 64, 48-59, 2014.
Ishimaru, Y., Oikawa, T., Suzuki, T., Takeishi, S., Matsuura, H., Takahashi, K., Hamamoto, S., Uozumi, N., Shimizu, T., Seo, M., Ohta, H. and Ueda, M. GTR1 is a jasmonic acid and jasmonoyl-l-isoleucine transporter in Arabidopsis thaliana. Bioscience, Biotechnology, and Biochemistry 81, 249-255, 2017a.
Ishimaru, Y., Washiyama, K., Oikawa, T., Hamamoto, S., Uozumi, N. and Ueda, M. Dimerization of GTR1 regulates their plasma membrane localization. Plant Signaling and Behavior 12, 1334749, 2017b.
Jørgensen, M.E., Nour-Eldin, H.H. and Halkier, B.A. Transport of defense compounds from source to sink: lessons learned from glucosinolates. Trends in Plant Science 20, 508-514, 2015.
Jørgensen, M.E., Xu, D., Crocoll, C., Ernst, H.A., Ramirez, D., Motawia, M.S., Olsen, C.E., Mirza, O., Nour-Eldin, H.H. and Halkier, B.A. Origin and evolution of transporter substrate specificity within the NPF family. ELife Sciences Publications 6, 1-31, 2017.
Jiang, D., Lei, J., Cao, B., Wu, S., Chen, G. and Chen, C. Molecular cloning and characterization of three glucosinolate transporter (GTR) genes from Chinese Kale. Genes 10, 202, 2019.
Kaishima, M., Ishii, J., Matsuno, T., Fukuda, N. and Kondo, A. Expression of varied GFPs in Saccharomyces cerevisiae: codon optimization yields stronger than expected expression and fluorescence intensity. Scientific Reports 6, 35932, 2016.
Li, Q., Zheng, J., Li, S., Huang, G., Skilling, S.J., Wang, L., Li, L., Li, M., Yuan, L. and Liu, P. Transporter-mediated nuclear entry of jasmonoyl-isoleucine is essential for jasmonate signaling. Molecular Plant 10, 695-708, 2017.
Liu, K.H. and Tsay, Y.F. Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation. The European Molecular Biology Organization Press Journal 22, 1005-1013, 2003.
Longo, A., Miles, N.W. and Dickstein, R. Genome mining of plant NPFs reveals varying conservation of signature motifs associated with the mechanism of transport. Frontiers in Plant Science 9, 1668, 2018.
Martínez-Ballesta, M.D., Moreno, D.A. and Carvajal, M. The Physiological Importance of Glucosinolates on Plant Response to Abiotic Stress in Brassica. International Journal of Molecular Sciences 14, 11607-11625, 2013.
McNamara, P., Lew, W. and Han, L. Fluorescent imaging and analysis with Typhoon 8600. Electrophoresis 22, 837-842, 2001.
Mitchell, C., Brennan, R.M., Graham, J. and Karley, A.J. Plant defense against herbivorous pests: Exploiting resistance and tolerance traits for sustainable crop protection. Frontiers in Plant Science 7, 1132, 2016.
Monk, B.C., Mason, A.B., Abramochkin, G., Haber, J.E., Seto-Young, D. and Perlin, D.S. The yeast plasma membrane proton pumping ATPase is a viable antifungal target. I. Effects of the cysteine-modifying reagent omeprazole. Biochimica et Biophysica Acta (BBA) - Biomembranes 1239, 81-90, 1995.
Nambiar, D.M., Kumari, J., Arya, G.C., Singh, A.K. and Bisht, N.C. A cell suspension based uptake method to study high affinity glucosinolate transporters. Plant Methods 16, 75, 2020.
Newstead, S. Towards a structural understanding of drug and peptide transport within the proton-dependent oligopeptide transporter (POT) family. Biochemical Society Transactions 39, 1353-1358, 2011.
Newstead, S. Molecular insights into proton coupled peptide transport in the PTR family of oligopeptide transporters. Biochimica et Biophysica Acta (BBA) - General Subjects 1850, 488-499, 2015.
Newstead, S. Recent advances in understanding proton coupled peptide transport via the POT family. Current Opinion in Structural Biology 45, 17-24, 2017.
Niño-González, M., Novo-Uzal, E., Richardson, D.N., Barros, P.M. and Duque, P. More transporters, more substrates: The Arabidopsis major facilitator superfamily revisited. Molecular Plant 12, 1182-1202, 2019.
Nour-Eldin, H.H., Andersen, T.G., Burow, M., Madsen, S.R., Jørgensen, M.E., Olsen, C.E., Dreyer, I., Hedrich, R., Geiger, D. and Halkier, B.A. NRT/PTR transporters are essential for translocation of glucosinolate defence compounds to seeds. Nature 488, 531-534, 2012.
Orij, R., Urbanus, M.L., Vizeacoumar, F.J., Giaever, G., Boone, C., Nislow, C., Brul, S. and Smits, G.J. Genome-wide analysis of intracellular pH reveals quantitative control of cell division rate by pHc in Saccharomyces cerevisiae. Genome Biology 13, 80, 2012.
Otero, J.M., Vongsangnak, W., Asadollahi, M.A., Olivares-Hernandes, R., Maury, J., Farinelli, L., Barlocher, L., Østerås, M., Schalk, M., Clark, A. and Nielsen, J. Whole genome sequencing of Saccharomyces cerevisiae: from genotype to phenotype for improved metabolic engineering applications. BioMed Central Medical Genomics 11, 723, 2010.
Palmgren, M.G. Plant plasma membrane H+-ATPases: Powerhouses for nutrient uptake. Annual Review of Plant Physiology and Plant Molecular Biology 52, 817-845, 2001.
Parker, J.L. and Newstead, S. Molecular basis of nitrate uptake by the plant nitrate transporter NRT1.1. Nature 507, 68-72, 2014.
Patterson, J.R., Polinski, N.K., Duffy, M.F., Kemp, C.J., Luk, K.C., Volpicelli-Daley, L.A., Kanaan, N.M. and Sortwell, C.E. Generation of alpha-synuclein preformed fibrils from monomers and use in vivo. Journal of Visualized Experiments 148, 59758, 2019.
Raman, M. and Martin, K. One solution for cloning and mutagenesis: In-fusion HD cloning plus. Nature Methods 11, 1-3, 2014.
Routledge, S.J., Mikaliunaite, L., Patel, A., Clare, M., Cartwright, S.P., Bawa, Z., Wilks, M.D.B., Low, F., Hardy, D., Rothnie, A.J. and Bill, R.M. The synthesis of recombinant membrane proteins in yeast for structural studies. Methods 95, 26-37, 2016.
Saito, H., Oikawa, T., Hamamoto, S., Ishimaru, Y., Kanamori-Sato, M., Sasaki-Sekimoto, Y., Utsumi, T., Chen, J., Kanno, Y., Masuda, S., Kamiya, Y., Seo, M., Uozumi, N., Ueda, M. and Ohta, H. The jasmonate-responsive GTR1 transporter is required for gibberellin-mediated stamen development in Arabidopsis. Nature Communications 6, 6095, 2015.
Saliba, E., Primo, C., Guarini, N. and André, B. A plant plasma-membrane H+-ATPase promotes yeast TORC1 activation via its carboxy-terminal tail. Scientific Reports 11, 4788, 2021.
Sattelmacher, B. The apoplast and its significance for plant mineral nutrition. New Phytologist 149, 167-192, 2001.
Shiroishi, M., Moriya, M. and Ueda, T. Micro-scale and rapid expression screening of highly expressed and or stable membrane protein variants in Saccharomyces cerevisiae. Protein science: A Publication of the Protein Society 25, 1863-1872, 2016.
Sondergaard, T.E., Schulz, A. and Palmgren, M.G. Energization of transport processes in plants. Roles of the plasma membrane H+-ATPase. Plant Physiology 136, 2475-2482, 2004.
Sun, J., Bankston, J.R., Payandeh, J., Hinds, T.R., Zagotta, W.N. and Zheng, N. Crystal structure of the plant dual-affinity nitrate transporter NRT1.1. Nature 507, 73-77, 2014.
van Dam, N.M., Tytgat, T.O.G. and Kirkegaard, J.A. Root and shoot glucosinolates: a comparison of their diversity, function and interactions in natural and managed ecosystems. Phytochemistry Reviews 8, 171-186, 2009.
Van Poecke, R.M.P. Arabidopsis-insect interactions. The Arabidopsis Book 5, 107, 2007.
Variyar, P.S., Banerjee, A., Akkarakaran, J.J. and Suprasanna, P. Role of glucosinolates in plant stress tolerance. Emerging Technologies and Management of Crop Stress Tolerance: Volume 1-Biological Techniques, Elsevier, Netherlands, 271-291, 2014.
War, A.R., Buhroo, A.A., Hussain, B., Ahmad, T., Nair, R.M. and Sharma, H.C. Plant defense and insect adaptation with reference to secondary metabolites. Co-Evolution of Secondary Metabolites, Springer International Publishing, Germany, 1-28, 2019.
War, A.R., Paulraj, M.G., Ahmad, T., Buhroo, A.A., Hussain, B., Ignacimuthu, S. and Sharma, H.C. Mechanisms of plant defense against insect herbivores. Plant Signaling and Behavior 7, 1306-1320, 2012.
Wieczorek, H., Brown, D., Grinstein, S., Ehrenfeld, J. and Harvey, W.R. Animal plasma membrane energization by proton‐motive V‐ATPases. BioEssays 21, 637-648, 1999.
Yin, J., Li, G., Ren, X. and Herrler, G. Select what you need: A comparative evaluation of the advantages and limitations of frequently used expression systems for foreign genes. Journal of Biotechnology 127, 335-347, 2007.
Zhang, T., Lei J., Yang, H., Xu, K., Wang, R. and Zhang, Z. An improved method for whole protein extraction from yeast Saccharomyces cerevisiae. Yeast 28, 795-798, 2011.
Zhu, M. and Fahl, W.E. Development of a green fluorescent protein microplate assay for the screening of chemopreventive agents. Analytical Biochemistry 287, 210-217, 2000.