研究生: |
陳昆佑 Chen, Kun-You |
---|---|
論文名稱: |
以分子模擬探討功能化高分子接著劑對離子嵌入與遷出鋰電池電解質/正極界面的影響 Molecular Simulation of the Effect of Functional Polymer Binder on Lithium Ion Intercalation and Deintercalation at the Electrolyte-Cathode Interface of Lithium Ion Battery |
指導教授: |
邱繼正
Chiu, Chi-Cheng |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 133 |
中文關鍵詞: | 分子動力學模擬 、鋰離子電池 、功能性高分子 、黏著劑 |
外文關鍵詞: | Molecular Dynamics, lithium ion batteries, functional polymer, binder |
相關次數: | 點閱:111 下載:10 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電極黏著劑在鋰離子電池中對於提升電池效能上扮演重要的角色。其主要是將正極材料黏在集電板上,減緩在重複充放電下活性材料的損失。近期研究指出,以導離子型高分子如PAN、PEO、PSS、PNVF作為黏著劑,可以利用其導鋰離子之特性,進而提升電池效能。本研究利用分子動力學模擬,從微觀的角度分析不同功能性高分子黏著劑對鋰離子於正極/電解質界面傳遞機制的影響。
實驗以及商業上常用的PVDF,其高分子骨幹上氟原子與電極表面鋰離子接觸,不易有高分子鏈離開電極表面,阻擋電解質接觸,並使鋰離子接近電極所需自由能較高。而PAN高分子之官能基在支鏈上,使高分子主鏈較易離開電極表面,在電極表面分布廣,使鋰離子接近電極所需自由能較低;此外PAN與鋰離子有吸引力,在電場下由鋰離子帶動高分子,造成高分子結構產生改變。PEO高分子之氧原子在主鏈上,與鋰離子作用力強,並以4~6個氧原子包覆鋰離子;而在電場下由鋰離子帶動,亦會造成高分子分布結構之改變。PSS帶負電易吸引鋰離子,但苯環結構會阻礙鋰離子進出電極,故鋰離子接近電極所需自由能較高。PNVF高分子,可以降低界面電位,更擁有在電場下高分子結構不易改變之特性。
我們從不同結構及動力學性質分析找出各個高分子的特點,並對照實驗上改善的電池效能。PAN有自由能較低之分子特點,可對應於較低的電荷轉移阻抗;PEO與鋰離子有強作用力,可對應高電極材料分散性的結果;PSS在鋰離子漂移速度分析顯示PSS有好的電子傳導性;而PNVF在循環充放電下能保持結構完整性,可對應實驗上有良好黏著性以及耐久性。本研究所提出之分子特性可以提供實驗上在製備黏著劑時可考量的參數,以提升所需電池效能。
This study focuses on the effects of different functional polymer binders on the lithium ion intercalating and deintercalating at the cathode surface of high-power lithium ion batteries (LIBs). We use molecular dynamics (MD) simulations to examine the mechanism of the functional polymers, including polyacrylonitrile (PAN), polyethylene glycol (PEO), poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PSS), and poly(N-vinylformamide) (PNVF), which have been experimentally shown to improve LIB efficiencies. Our results show that PAN can lower the free energy barrier at the surface, which corresponds to the lower charge transfer resistance observed in experiment. The strong interaction between Li+ and PEO can lead to improved dispersion of electrode active materials. The drift velocity analysis indicates that PSS improves Li+ conductivity. Moreover, PNVF maintains structural integrity under charge and discharge cycles, corresponding to a good adhension and an improved battery endurance.
1. Demar, P. J. Nickel-Iron. Telecommun. Energy Conf. (INTELEC), 33rd Int. (2011).
2. Castro, L. et al. Aging Mechanisms of LiFePO4 ∕∕ Graphite Cells Studied by XPS: Redox Reaction and Electrode∕Electrolyte Interfaces. J. Electrochem. Soc. 159, A357 (2012).
3. Meng, Y. S. &Arroyo-de Dompablo, M. E. First principles computational materials design for energy storage materials in lithium ion batteries. Energy Environ. Sci. 2, 589 (2009).
4. Tarascon, J. M. &Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).
5. DuPasquier, A., Plitz, I., Menocal, S. &Amatucci, G. A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications. J. Power Sources 115, 171–178 (2003).
6. Padhi, A. K. Effect of Structure on the Fe[sup 3+]∕Fe[sup 2+] Redox Couple in Iron Phosphates. J. Electrochem. Soc. 144, 1609 (1997).
7. Smith, G. D., Borodin, O., Russo, S. P., Rees, R. J. &Hollenkamp, A. F. A molecular dynamics simulation study of LiFePO4/electrolyte interfaces: structure and Li+ transport in carbonate and ionic liquid electrolytes. Phys. Chem. Chem. Phys. 11, 9884 (2009).
8. Luo, W. et al. A Thermally Conductive Separator for Stable Li Metal Anodes. Nano Lett. 15, 6149–6154 (2015).
9. Bieker, G., Winter, M. &Bieker, P. Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode. Phys. Chem. Chem. Phys. 17, 8670–8679 (2015).
10. Xu, K. Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chem. Rev. 104, 4303–4418 (2004).
11. Li, W., Dahn, J. R. &Wainwright, D. S. Rechargeable Lithium Batteries with Aqueous Electrolytes. Science (80-. ). 264, 1115–1118 (1994).
12. Armand, M., Endres, F., MacFarlane, D. R., Ohno, H. &Scrosati, B. Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 8, 621–629 (2009).
13. Isken, P. et al. High flash point electrolyte for use in lithium-ion batteries. Electrochim. Acta 56, 7530–7535 (2011).
14. Lee, H., Yanilmaz, M., Toprakci, O., Fu, K. &Zhang, X. A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ. Sci. 7, 3857–3886 (2014).
15. Arora, P. &Zhang, Z. (John). Battery Separators. Chem. Rev. 104, 4419–4462 (2004).
16. Liu, D. et al. Novel conductive binder for high-performance silicon anodes in lithium ion batteries. Nano Energy 36, 206–212 (2017).
17. Lee, J. H., Lee, S., Paik, U. &Choi, Y. M. Aqueous processing of natural graphite particulates for lithium-ion battery anodes and their electrochemical performance. J. Power Sources 147, 249–255 (2005).
18. Lee, J. H., Kim, J. S., Kim, Y. C., Zang, D. S. &Paik, U. Dispersion properties of aqueous-based LiFePO4pastes and their electrochemical performance for lithium batteries. Ultramicroscopy 108, 1256–1259 (2008).
19. Geaney, H. &O’Dwyer, C. Examining the Role of Electrolyte and Binders in Determining Discharge Product Morphology and Cycling Performance of Carbon Cathodes in Li-O 2 Batteries. J. Electrochem. Soc. 163, A43–A49 (2016).
20. Gong, L., Nguyen, M. H. T. &Oh, E.-S. High polar polyacrylonitrile as a potential binder for negative electrodes in lithium ion batteries. Electrochem. commun. 29, 45–47 (2013).
21. Zeng, W. et al. Enhanced Ion Conductivity in Conducting Polymer Binder for High-Performance Silicon Anodes in Advanced Lithium-Ion Batteries. Adv. Energy Mater. 8, 1702314 (2018).
22. Shi, Y., Zhou, X. &Yu, G. Material and Structural Design of Novel Binder Systems for High-Energy, High-Power Lithium-Ion Batteries. Acc. Chem. Res. 50, 2642–2652 (2017).
23. Tarascon, J. M., Gozdz, A. S., Schmutz, C., Shokoohi, F. &Warren, P. C. Performance of Bellcore’s plastic rechargeable Li-ion batteries. Solid State Ionics 86–88, 49–54 (1996).
24. Huang, B. The mechanism of lithium ion transport in polyacrylonitrile-based polymer electrolytes. Solid State Ionics 91, 279–284 (1996).
25. Wang, Z., Huang, B., Xue, R., Huang, X. &Chen, L. Spectroscopic investigation of interactions among components and ion transport mechanism in polyacrylonitrile based electrolytes. Solid State Ionics 121, 141–156 (1999).
26. Quartarone, E. &Mustarelli, P. Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem. Soc. Rev. 40, 2525 (2011).
27. Nakayama, M., Wada, S., Kuroki, S. &Nogami, M. Factors affecting cyclic durability of all-solid-state lithium polymer batteries using poly(ethylene oxide)-based solid polymer electrolytes. Energy Environ. Sci. 3, 1995 (2010).
28. Vélez, J. F., Aparicio, M. &Mosa, J. Effect of Lithium Salt in Nanostructured Silica-Polyethylene Glycol Solid Electrolytes for Li-Ion Battery Applications. J. Phys. Chem. C 120, 22852–22864 (2016).
29. Meyer, W. H. Polymer electrolytes for lithium-ion batteries. Adv. Mater. 10, 439–448 (1998).
30. Maleki, H., Deng, G., Kerzhner-Haller, I., Anani, A. &Howard, J. N. Thermal Stability Studies of Binder Materials in Anodes for Lithium-Ion Batteries. J. Electrochem. Soc. 147, 4470 (2000).
31. Gong, L., Nguyen, M. H. T. &Oh, E. S. High polar polyacrylonitrile as a potential binder for negative electrodes in lithium ion batteries. Electrochem. commun. 29, 45–47 (2013).
32. Tsao, C. H., Hsu, C. H. &Kuo, P. L. Ionic Conducting and Surface Active Binder of Poly (ethylene oxide)-block-poly(acrylonitrile) for High Power Lithium-ion Battery. Electrochim. Acta 196, 41–47 (2016).
33. Shen, L., Shen, L., Wang, Z. &Chen, L. In situ thermally cross-linked polyacrylonitrile as binder for high-performance silicon as lithium ion battery anode. ChemSusChem 7, 1951–1956 (2014).
34. Pethkar, S., Dharmadhikari, J. A., Athawale, A. A., Aiyer, R. C. &Vijayamohanan, K. Evidence for second-order optical nonlinearity in γ-ray induced partially cross-linked polyacrylonitrile. J. Phys. Chem. B 105, 5110–5113 (2001).
35. Lepage, D., Michot, C., Liang, G., Gauthier, M. &Schougaard, S. B. A Soft Chemistry Approach to Coating of LiFePO4 with a Conducting Polymer. Angew. Chemie 123, 7016–7019 (2011).
36. Das, P. R., Komsiyska, L., Osters, O. &Wittstock, G. PEDOT: PSS as a Functional Binder for Cathodes in Lithium Ion Batteries. J. Electrochem. Soc. 162, A674–A678 (2015).
37. Tran, B. et al. Adhesive PEG-based binder for aqueous fabrication of thick Li4Ti5O12electrode. Electrochim. Acta 88, 536–542 (2013).
38. Haruki Okada, O. BINDER FOR ELECTRODE OF ELECTROCHEMICAL ELEMENT, COMPOSITION FOR ELECTRODE OF ELECTROCHEMICAL ELEMENT, ELECTRODE OF ELECTROCHEMICAL ELEMENT AND ELECTROCHEMICAL ELEMENT. (2014).
39. Jorgensen, W. L., Maxwell, D. S. &Tirado-Rives, J. Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996).
40. Canongia Lopes, J. N., Deschamps, J. &Pádua, A. A. H. Modeling Ionic Liquids Using a Systematic All-Atom Force Field. J. Phys. Chem. B 108, 2038–2047 (2004).
41. Canongia Lopes, J. N. &Pádua, A. A. H. Molecular Force Field for Ionic Liquids Composed of Triflate or Bistriflylimide Anions. J. Phys. Chem. B 108, 16893–16898 (2004).
42. Qiao, B., Cerdà, J. J. &Holm, C. Poly(styrenesulfonate)−Poly(diallyldimethylammonium) Mixtures: Toward the Understanding of Polyelectrolyte Complexes and Multilayers via Atomistic Simulations. Macromolecules 43, 7828–7838 (2010).
43. Martínez, L., Andrade, R., Birgin, E. G. &Martínez, J. M. PACKMOL: A package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30, 2157–2164 (2009).
44. Yoshio Waseda. The Structure of Non-Crystalline Materials: Liquids and Amorphous Solids. (McGraw-Hill, 1980).
45. Shinoda, W., Shimizu, M. &Okazaki, S. Molecular Dynamics Study on Electrostatic Properties of a Lipid Bilayer: Polarization, Electrostatic Potential, and the Effects on Structure and Dynamics of Water near the Interface. J. Phys. Chem. B 102, 6647–6654 (1998).
46. Lee, W.-H. Exploring the Effects of Amphiphilic Fluorinated Copolymer on the Structures and Ion Dynamics at the Electrolyte-Cathode Interface of Lithium Ion Battery via Molecular Simulations. (2017).
47. Zhang, S. S. &Jow, T. R. Study of poly (acrylonitrile-methyl methacrylate) as binder for graphite anode and LiMn2O4 cathode of Li-ion batteries. J. Power Sources 109, 422–426 (2002).