| 研究生: |
張宏遠 Zhang, Hong-Yuan |
|---|---|
| 論文名稱: |
分析由拉曼標記的骨架所產生的二倍頻及三倍頻 Analysis of second and third harmonic generation from the backbone of Raman tags |
| 指導教授: |
陳宣燁
Chen, Shiuan-Yeh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 二倍頻 、三倍頻 、拉曼 、多重光學標記 |
| 外文關鍵詞: | SHG, THG, Raman, Multi-function optical tag |
| 相關次數: | 點閱:36 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
過去,在醫生治療腫瘤的手段中,一直以來都是以切除手術為主,而除了依靠外科醫師的肉眼判斷腫瘤區域外,常使用外源的訊號分子來進行腫瘤區域的識別,輔助手術中的來源多為螢光分子例如5-ALA,螢光分子具有極高的亮度,但是受到光照容易造成光漂白(Photobleaching),使得螢光失去發光能力,產生觀測上的困難,另一個缺點在於生物體本身有許多也會有螢光訊號產生的物質,因此在接收螢光訊號時,容易因為接收到背景的假陽性訊號導致對比下降無法準確的觀察患部。
為解決這個問題,本實驗室已開發的拉曼標記以核心-衛星金粒子叢集結構為基底,其位於內部間隙處會產生熱點效應,透過表面增強拉曼散射技術(Surface Enhance Raman Scattering, SERS)將Cyanine5(Cy5)螢光分子的拉曼訊號有效增強約108倍,在叢集結構外部包覆二氧化矽保護殼並在表面修飾對Epidermal growth factor receptor (EGFR)有專一性的抗體透過抗體與抗原的專一性連結,將叢集結構定位於Glioblastoma (GBM)癌細胞上,之後粒子利用633 nm雷射照射核衛星結構透過表面電漿共振增強吸收光能後轉換的熱能,執行定位在GBM細胞上的光熱治療實驗[1]。
如果將治療層級移到組織的光熱治療,此時就要考慮組織間物質的吸收、散射,以光熱治療實驗使用的雷射波段為例,633 nm的雷射其穿透深度就有限,而生物體在650-1350 nm這個波段對光具有較高的穿透率,稱為生物的組織光學窗口(tissue optical window)利用近紅外光波長的光源,透過生物的組織光學窗口我們可以將光源入射到較深層的人體組織,之後藉由非線性光學的倍頻轉換過程讓核心-衛星金粒子叢集結構產生二倍頻(Second-harmonic generation, SHG)、三倍頻(Third-harmonic generation, THG)的訊號,最後利用表面增強技術將所獲得的非線性訊號增強,達到在較深層組織的光學影像檢測。
本論文主要貢獻為整合本實驗室製作的核心-衛星金粒子叢集結構目前已知的光學訊號,並解釋非線性訊號其產生的機制以及相關的原理,之後透過定性與定量的分析,驗證核心-衛星金粒子叢集結構作為一個多功能的光學標記的潛力。
最後,希望透過本研究,能夠提供一個實現多重光學標記的可能性,提高癌症切除手術的準確性。
In the past, resection is always the main method in the treatment of tumors. In addition to identify tumor cell by the eyes, doctors usually use extrinsic source, likes fluorescent material or chromophore.
However, photobleaching is a serious problem in almost every fluorescent material. Another problem is hard to detect in human body which also offers some fluorescent background.
To solve this problem, a robust and brilliant Raman tag called core-satellite-assemblies (CSA) which could enhance the Raman signal of Cyanine5 to 108 times at the 1-2 nm intra-nanogap hot spot theoretically is presented in our previous works.
And we also use CSA to perform a photothermal therapy at cell level. But, if we want to operate at tissue, we need to solve the high optical absorption in the tissue.
In the range about 650-1350 nm, called tissue optical window, the optical absorption become relatively low. So, this is a good idea about optical harmonic generation effect. If we use second harmonic generation technique, we could convert wavelength from 1280 nm to 640 nm to avoid the high absorption at fundamental wavelength in human tissue.
In this work, we want verify CSA which show several optical properties likes SHG, THG and Raman scattering could be a multi-function optical tag theoretically and experimentally.
[1] Chang, Yung-Ching, et al. "Polyelectrolyte induced controlled assemblies for the backbone of robust and brilliant Raman tags." Optics Express 25.20 (2017): 24767-24779.
[2] Abadeer, Nardine S., and Catherine J. Murphy. "Recent progress in cancer thermal therapy using gold nanoparticles." The Journal of Physical Chemistry C 120.9 (2016): 4691-4716.
[3] Kauranen, Martti, and Anatoly V. Zayats. "Nonlinear plasmonics." Nature Photonics 6.11 (2012): 737-748.
[4] Panoiu, Nicolae C., et al. "Nonlinear optics in plasmonic nanostructures." Journal of Optics 20.8 (2018): 083001.
[5] Wang, Hongfei, et al. "Second harmonic generation from the surface of centrosymmetric particles in bulk solution." Chemical Physics Letters 259.1-2 (1996): 15-20.
[6] Ponath, H-E., and George I. Stegeman, eds. "Nonlinear surface electromagnetic phenomena. " Elsevier, 2012.
[7] Kreibig, Uwe, and Michael Vollmer. "Optical properties of metal clusters. "Vol. 25. Springer Science & Business Media, 2013.
[8] Karam, Tony E., and Louis H. Haber. "Molecular adsorption and resonance coupling at the colloidal gold nanoparticle interface." The Journal of Physical Chemistry C 118.1 (2014): 642-649.
[9] Brevet, PierreáF, HubertáH Girault, and DavidáJ Schiffrin. "Surface plasmon enhanced non-linear optical response of gold nanoparticles at the air/toluene interface." Chemical Communications 19 (1997): 1901-1902.
[10] Gan, Wei, et al. "Communication: Reactions and adsorption at the surface of silver nanoparticles probed by second harmonic generation." The Journal of Chemical Physics 134.4 (2011): 041104.
[11] Gonella, Grazia, and Hai-Lung Dai. "Second harmonic light scattering from the surface of colloidal objects: theory and applications." Langmuir 30.10 (2014): 2588-2599.
[12] Lien, Miao-Bin, et al. "Optical asymmetry and nonlinear light scattering from colloidal gold nanorods." ACS Nano 11.6 (2017): 5925-5932.
[13] Slablab, A., et al. "Second-harmonic generation from coupled plasmon modes in a single dimer of gold nanospheres." Optics Express 20.1 (2012): 220-227.
[14] Timpu, Flavia, et al. "Enhanced second-harmonic generation from sequential capillarity-assisted particle assembly of hybrid nanodimers." Nano Letters 17.9 (2017): 5381-5388.
[15] Pu, Ye, et al. "Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation." Physical Review Letters 104.20 (2010): 207402.
[16] Lehr, Dennis, et al. "Enhancing second harmonic generation in gold nanoring resonators filled with lithium niobate." Nano letters 15.2 (2015): 1025-1030.
[17] Thyagarajan, Krishnan, et al. "Enhanced second-harmonic generation from double resonant plasmonic antennae." Optics express 20.12 (2012): 12860-12865.
[18] Yang, Kuang-Yu, et al. "Enhancement mechanisms of the second harmonic generation from double resonant aluminum nanostructures." ACS Photonics 4.6 (2017): 1522-1530.
[19] Jiang, L. W., et al. "Label‐free detection of fibrillar collagen deposition associated with vascular elements in glioblastoma multiforme by using multiphoton microscopy." Journal of Microscopy 265.2 (2017): 207-213.
[20] Jiang, Liwei, et al. "Label-free imaging of brain and brain tumor specimens with combined two-photon excited fluorescence and second harmonic generation microscopy." Laser Physics Letters 14.10 (2017): 105401.
[21] Rogov, Andrii, et al. "Simultaneous multiharmonic imaging of nanoparticles in tissues for increased selectivity." ACS Photonics 2.10 (2015): 1416-1422.
[22] Dubreil, Laurence, et al. "Multi-harmonic imaging in the second near-infrared window of nanoparticle-labeled stem cells as a monitoring tool in tissue depth." ACS Nano 11.7 (2017): 6672-6681.
[23] Murti, Y. V. G. S., and C. Vijayan. "Essentials of nonlinear optics. " John Wiley & Sons, 2014.
[24] Powers, Peter E., and Joseph W. Haus. "Fundamentals of nonlinear optics." CRC Press, 2017.
[25] New, Geoffrey. "Introduction to nonlinear optics. " Cambridge University Press, 2011.
[26] Pedrotti, Frank L., Leno M. Pedrotti, and Leno S. Pedrotti. "Introduction to optics." Cambridge University Press, 2017.
[27] Chandra, Manabendra, and Puspendu K. Das. "“Small-particle limit” in the second harmonic generation from noble metal nanoparticles." Chemical Physics 358.3 (2009): 203-208.
[28] Russier-Antoine, I., et al. "Multipolar contributions of the second harmonic generation from silver and gold nanoparticles." The Journal of Physical Chemistry C 111.26 (2007): 9044-9048.
[29] Roke, Sylvie, and Grazia Gonella. "Nonlinear light scattering and spectroscopy of particles and droplets in liquids." Annual Review of Physical Chemistry 63 (2012): 353-378.
[30] Malgrange, Cécile, Christian Ricolleau, and Michel Schlenker. "Symmetry and Physical Properties of Crystals. " Springer, 2014.
[31] Boyd, Robert W. "Nonlinear optics. " Academic Press, 2008.
[32] Clay, G. Omar, et al. "Spectroscopy of third-harmonic generation: evidence for resonances in model compounds and ligated hemoglobin." JOSA B 23.5 (2006): 932-950.
[33] 李家維、楊瑞森, "生物電子顯微鏡學", 行政院國科會精密儀器發展中心編印, 2002.
[34] Bell, David C., and Natasha Erdman, eds. "Low voltage electron microscopy: Principles and applications. " John Wiley & Sons Incorporated, 2013.
[35] 孫逸民, 陳玉舜, 趙敏勳, 謝明學, 劉興鑑, "儀器分析" 全威圖書有限公司,1997.
[36] Tucker, I. M., et al. "Laser Doppler Electrophoresis applied to colloids and surfaces." Current Opinion in Colloid & Interface Science 20.4 (2015): 215-226.
[37] Hariharan, P. "Optical interferometry." Reports on Progress in Physics 54.3 (1991): 339.
[38] Hariharan, Parameswaran. "Basics of interferometry. " Elsevier, 2010.
[39] Voigtländer, Bert. "Atomic Force Microscopy. " Springer, 2019.
[40] Voigtländer, Bert. "Scanning probe microscopy: Atomic force microscopy and scanning tunneling microscopy. " Springer, 2015.
[41] Ebbesen, Thomas W., et al. "Extraordinary optical transmission through sub-wavelength hole arrays." Nature 391.6668 (1998): 667-669.
[42] Vance, Fredrick W., et al. "Interrogation of nanoscale silicon dioxide/water interfaces via hyper-Rayleigh scattering." The Journal of Physical Chemistry B 102.11 (1998): 1845-1848.
[43] Le Calvez, A., E. Freysz, and A. Ducasse. "Experimental study of the origin of the second-order nonlinearities induced in thermally poled fused silica." Optics Letters 22.20 (1997): 1547-1549.
[44] Schürer, Benedikt, et al. "Second harmonic light scattering from spherical polyelectrolyte brushes." The Journal of Physical Chemistry C 115.37 (2011): 18302-18309.
[45] Ganeev, R. A., et al. "Frequency conversion of picosecond radiation in fullerene-doped polyimide films and colloidal metals." Journal of Optics B: Quantum and Semiclassical Optics 3.3 (2001): 88.