簡易檢索 / 詳目顯示

研究生: 吳洛易
Wu, Luo-Yi
論文名稱: 以預先製作之聚合物結構應用於反向操作之電控調焦液晶透鏡研究
Study of Liquid Crystal Lenses with Prior Generation of Polymer Networks Electrically Operated with Reversely Tunable Focuses
指導教授: 許家榮
Sheu, Chia-Rong
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 74
中文關鍵詞: 液晶透鏡聚合物反應時間
外文關鍵詞: Liquid crystal lens, Polymer, Response time
相關次數: 點閱:139下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究於改善液晶透鏡之反應時間,液晶透鏡為利用圓孔型電極在液晶層產生非均勻性對稱電場,造成液晶分子方向成一折射率梯度分佈,當入射光進入液晶透鏡時,感受到不同的光程差進而造成光線的匯聚或發散;而我們利用參雜聚合物於液晶當中加快液晶透鏡之反應時間,具體的方法是先施加電壓將液晶定於最大干涉條紋分布,再替換圓孔型電極為整面電極將液晶分子轉向於垂直電場平行,藉此得到最大的可調焦距範圍。
    在實驗中發現,圓孔的孔徑大小與液晶層厚度對於可調焦距範圍互相影響,就目前的實驗結果來看,上升反應時間為97ms,下降反應時間為8.5ms,但是可調焦距均在120cm以上(130~152.8cm),嚴重影響液晶透鏡的透鏡能力。
    關鍵字:液晶透鏡;聚合物;反應時間

    In this thesis, the main investigation is to fabricate electrically switchable fast response liquid crystal lens via prior generation of polymer networks. We mixed polymer in liquid crystal lens to accelerate the response time by way of setting the liquid crystal in the most distribution of interference fringes, then using the vertical electric field which is to change the hole pattern electrode to the entire surface of the electrode to stretch the liquid crystal.

    As a result, the aperture of the hole pattern and cell gap make the impact on adjustable focal length range. Although we achieve a good response time, but the adjustable focal length range are almost above 120cm, the image quality have deterioration severely.
    Keywords: Liquid crystal lens;Polymer;Response time

    目錄 摘要 I Abstract II 致謝 IX 目錄 X 圖目錄 XII 表目錄 XV 第一章 緒論 1 1-1 前言 1 1-2 研究動機 10 第二章 液晶簡介 12 2-1 液晶的起源 12 2-2 液晶的分類 12 2-3 液晶之特性 16 2-3-1秩序參數(order parameter) 16 2-3-2彈性係數(elastic constant) 17 2-3-3雙折射性(birefringence) 19 2-3-4液晶之配向處理 20 第三章 實驗原理 21 3-1 折射率梯度型透鏡(gradient refractive index lenses) 21 3-2 液晶透鏡 25 3-2-1 圓孔型液晶透鏡內之電場形式 25 3-2-2 圓孔型液晶透鏡產生之干涉條紋 26 3-3 液晶反應時間 27 第四章 實驗裝置與材料 29 4-1 實驗設備與材料 29 4-1-1 向列型液晶E7, G1物性參數介紹 29 4-1-2 光聚合物(1,4-Bis-[4-(3- acryloyloxypropyloxy) benzoyloxy]-2-methylbenzene,RM257) 30 4-1-3 聚二甲基矽氧烷(Polydimethylsiloxane,PDMS) 31 4-1-4 交聯單體(1-Viny1-2-Pyrrollidone,NVP) 32 4-2 以預先製作之聚合物結構於液晶透鏡製作 32 4-2-1 設備與材料 33 4-2-2 以預先製作之聚合物結構於液晶透鏡製作步驟 34 4-3 實驗裝置與量測 45 4-3-1 以預先製作之聚合物結構於液晶透鏡之干涉條紋量測 45 4-3-2 以預先製作之聚合物結構於液晶透鏡之焦距量測 48 4-3-3 以預先製作之聚合物結構於液晶透鏡之反應時間量測 49 第五章 實驗結果與分析 51 5-1 PDMS平整度對以預先製作之聚合物結構液晶透鏡之影響 51 5-2 液晶層厚度與圓形電極孔洞大小對液晶透鏡之干涉條紋數影響 53 5-3 液晶層厚度對以預先製作之聚合物結構於液晶透鏡之干涉條紋數變化之影響 62 5-4 模板型液晶透鏡之光學量測 64 第六章 結論與未來展望 70 6-1 結論 70 6-2 未來展望 71 參考文獻 72

    [1] Nie, Xiangyi, et al. ‘‘Pretilt angle effects on liquid crystal response time.’’, OSA, 3.3, 280-283(2007)
    [2] M. Honma, S. Sato, “Optical Properties of an Anamorphic Liquid Crystal Microlens Using an Elliptically-Patterned Electrode Structure,” SPIE, 3143, 0277-786x, 97(2000)
    [3] M. Tanaka, S. Sato, “Electrically Controlled Millimeter-Wave Focusing Properties of Liquid Crystal Lens,” Jpn. J. Appl. Phys., 41, 5332-5333(2002)
    [4] B. Wang, M. Ye, M. Honma, S. Sato, “Liquid Crystal Lens with Spherical Electrode,” Jpn. J. Appl. Phys., 41, 1232-1233(2002)
    [5] M. Ye, S. Sato, “Enhancement of focusing power of liquid crystal lens by new cell structure,” Mol. Cryst. Liq. Cryst., 413, 2553-2557(2004)
    [6] M. Ye, S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41,571-573 (2002).
    [7] M. Ye, S. Sato, “Liquid-crystal lens with a focal length that is
    variable in a wide range,” Appl. Phys. Opt., 43, 35 (2004).
    [8] M.Ye and S.Sato,“Liquid crystal lens with insulator layers for focusing light waves of arbitrary polarizations,” Jpn. J. Appl.Phys. 42, 6439–
    6440(2003).
    [9] H. Ren, S. T. Wu, “Polymer network liquid crystals for
    tunable microlens arrays,” J. Phys. D: Appl. Phys. 37, 400-403 (2004).
    [10] M. Xu, Q. Wang, “A microlens array based on polymer network liquid crystal,” J. Appl. Phys. 113, 053105 (2013)
    [11] H. Ren, S. T. Wu, “Polymer-stabilized liquid crystal microlens array with large dynamic range and fast response time,” Opt. Lett. 38, 16 (2013)
    [12] 游琮宏,”控制混合矽烷鍍膜於玻璃表面產生可調變預傾角的液晶盒之研究”,國立成功大學光電科學與工程研究所碩士論文,中華民國九十六年七月.
    [13] Toralf Scharf, “Polarized Ligh in Liquid Crystal and Polymers,” Chap. 6, John Wiley & Sons (2007)
    [14] Deng-Ke Yang, Shin-Tson Wu, “Fundamentals of Liquid Crystal Devices,” Chap. 1, John Wiley & Sons (2006)
    [15] Toralf Scharf, “Polarized Ligh in Liquid Crystal and Polymers,”
    Chap. 6, John Wiley & Sons (2007)
    [16] K. Takatoh, M. Hasegawa, M. Koden, N. Itoh, R. Hasegawa, M. Sakamoto, “Alignment Technologies and Applications of Liquid Crystal Devices,” Chap. 2, Taylor&Francis Group (2005)
    [17] Lam-Choon Khoo, “Liquid Crystals,” 2nd. Edition, Chap. 1, John Wiley & Sons (2007)
    [18] 張仕仁, “用雙丙烯酸酯薄膜記錄氦氖雷射全像干涉光場光訊息之研究,” 國立中山大學光電工程學系碩士論文(2011)
    [19] Robert Allen Ramsey, “Holographic patterning of polymer dispersed liquid crystal materials for diffractive optics elements,” Ph. D. disserta-
    tion, University of Texas at arlington (2006)
    [20] W.J. Zheng, M.H. Huang, “Use of polydimethylsiloxane thin film as vertical liquid crystal alignment layer,” Thin Solid Films, 520, 2841–2845 (2012)

    無法下載圖示 校內:2021-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE