簡易檢索 / 詳目顯示

研究生: 李孟軒
Lee, Meng-Hsuan
論文名稱: 高錳酸鉀及臭氧對水中2,4-二氨基丁酸(DAB)與N-(2-氨乙基)甘氨酸(AEG)的氧化處理研究
Oxidation Treatment for 2,4-Diaminobutyric Acid (DAB) and N-(2-Aminoethyl) glycine (AEG) in Water Using Potassium Permanganate and Ozone
指導教授: 吳銘志
Wu, Ming-Chee
共同指導教授: 林財富
Lin, Tsair-Fuh
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 69
中文關鍵詞: 氧化藻毒素2,4-二氨基丁酸(DAB)N-(2-氨乙基)甘氨酸(AEG
外文關鍵詞: 2,4-diaminobutyric acid (DAB), N-(2-aminoethyl) glycine (AEG), Ozone, Potassium Permanganate, Oxidation, Cyanotoxins
相關次數: 點閱:107下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 淡水水體常因各類污水的不當排放,造成水體中營養鹽過剩而產生優養化的現象,進而產生大量藍綠菌(或稱藍綠藻)。許多藍綠菌會產生各種有害的代謝物,包括多種的藻毒素(Cyanotoxin)。藻毒素如進入飲用水系統中,將對人體造成傷害。β-甲氨基-L-丙氨酸(β-N-methylamino L-alanine, BMAA)及2,4-二氨基丁酸(2,4-diaminobutyric acid, DAB)和N-(2-氨乙基)甘氨酸(N-(2-aminoethyl) glycine, AEG)等皆為同分異構物,其為胺基酸結構之新型藻類神經毒素,會對生物的神經系統造成傷害。且藻毒素具有生物放大的效應,因此如何能有效地處理此類型藻毒素,是當今民生用水的水處理中一個重要的課題。本研究主要在探討目前用於水處理廠的兩種常見氧化劑:高錳酸鉀(Potassium permanganate, KMnO4)及臭氧(Ozone, O3),是否能有效地去除水中的DAB及AEG。
    根據氧化實驗的結果顯示,高錳酸鉀和DAB與AEG反應時,既使溶液內高錳酸鉀的濃度為1、4及5 mg/L,DAB在三小時內仍不會與高錳酸鉀產生有效的反應,而AEG卻會被高錳酸鉀所降解,其降解量隨著高錳酸鉀的濃度升高而升高。亦即,在高錳酸鉀濃度為1 mg/L時有30~50 %的AEG被降解;尤其當pH=7時,具有最高的降解量(約為48 %)。而高錳酸鉀在4 mg/L及5 mg/L的濃度下,降解量均超過90%。在臭氧的氧化反應實驗中,因臭氧與DAB和AEG的反應速度均極快,因此利用添加2-氯-4甲氧基苯酚(4-Chloroguaiacol,4-CG)進行競爭實驗。實驗結果顯示,臭氧相較於高錳酸鉀對AEG和DAB皆具有較佳的氧化能力。

    In this study, DAB (2,4-diaminobutyric acid) and AEG (N-(2-aminoethyl) glycine), produced by cyanobacteria of the water eutrophication algae; i.e., cyanotoxins, were oxidized by permanganate and ozone with various levels of concentration and pH value. The analyses were done to investigate whatever the different oxidants in whichever situations are giving better efficiency in removing the DAB and AEG within the water body.

    It was shown that the permanganate can’t efficiently oxidize the DAB, even raise the concentration of permanganate. The AEG would be removed with a longer time and higher concentration of permanganate. It may because of DAB and AEG are both having no double-bond structure such that the permanganate have no target to attack, therefore the hydroxylation cannot occur. Nevertheless, oxidation of glycine by permanganate ion in the aqueous phosphate buffers has shown that an auto-catalysis has occurred by the soluble form of colloidal manganese dioxide, which was formed as the reaction product. Namely, it gives the permanganate to be able to eliminate AEG. In addition, due to the oxidation reaction by ozone was very fast either for DAB or for AEG. The rate constant between ozone and DAB (or AEG) was found to be pH dependent; namely, when the pH is raised, both of their rate constants are also increased. The rate constants obtained in this study may serve as a useful reference for water utilities to estimate the removal efficiency; once DAB and AEG are present in the source water.

    中文摘要 II ABSTRACT III 誌謝 XIII 目錄 XIV 表目錄 XVI 圖目錄 XVII 第一章、緒論 1 1-1 前言 1 1-2 研究背景 2 1-2-1 藻毒素 4 1-2-2 環境現況 6 1-2-3 處理工法 12 1-3 文獻回顧 14 1-4 研究目的 16 1-5 研究流程與架構 16 第二章、理論背景 18 2-1 氧化還原 18 2-1-1 氧化還原地機制 19 2-2 氧化劑之氧化途徑 20 2-2-1 高錳酸鹽 20 2-2-2 臭氧 22 2-2-3 2-氯-4甲氧基苯酚 23 2-3 二階反應之反應速率 23 第三章、實驗方法 26 3-1 氧化還原實驗 26 3-1-1 實驗溶液 26 3-1-2 實驗儀器 27 3-1-3 實驗方法 30 第四章、結果與討論 34 4-1 高錳酸鉀氧化還原實驗 34 4-2 臭氧的氧化還原競爭實驗 52 第五章、結論與建議 58 5-1結論 58 5-2建議 58 參考文獻 60

    行政院環境保護署(2017)。飲用水水質標準。
    https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=O0040019
    行政院環境保護署(2018)。環境水質監測查詢。https://wq.epa.gov.tw/
    林宜賢(2020)。氯對於微囊藻中新型藻毒DAB與AEG之釋出及降解之研究,臺南市,碩士論文,107頁。
    陳逸廷(2018)。水中新型藻毒素β-甲氨基-L-丙氨酸的氧化處理研究。國立成功大學,臺南市,博士論文,107頁。
    經濟部水利署(2016)。公共給水有害藻類及代謝物監測與緊急應變處理技術之研究(MOEAWRA1050321)。取自:
    http://ir.lib.ncku.edu.tw/bitstream/987654321/175852/1/0010003002-000004.pdf
    Banack, S. A., Metcalf, J. S., Jiang, L., Craighead, D., Ilag, L. L., and Cox, P. A. (2012). Cyanobacteria produce N-(2-aminoethyl) glycine, a backbone for peptide nucleic acids which may have been the first genetic molecules for life on earth. PLoS One, 7(11), p. 4
    Banack, S. A., Caller, T., Henegan, P., Haney, J., Murby, A., Metcalf, J. S., Powell, J., Cox, P. A., and Stommel, E. (2015). Detection of cyanotoxins, β-N-methylamino-L-alanine and microcystins, from a lake surrounded by cases of amyotrophic lateral sclerosis. Toxins (Basel), 7(2), pp. 322-336.
    Bartram, J. and Chorus, I. (Ed.). (1999). Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. New York: World Health Organization.
    Bell, E. A. (1962a). α,γ-diaminobutyric acid in seeds of twelve species of lathyrus and the identification of a new natural amino acid, l-homoarginine, in seeds of other species toxic to man and domestic animals. Nature, 193, pp. 1078-1079.
    Bell, E. A. (1962b). Associations of ninhydrin-reacting compounds in the seeds of 49 species of lathyrus. Biochemical Journal, 83(2), pp. 225-229.
    Bell, E. A. and Tirimanna, A. S. (1965). Associations of amino acids and related compounds in the seeds of forty-seven species of vicia: their taxonomic and nutritional significance. Biochemical Journal, 97(1), pp. 104-111.
    Benitez, F. J., Beltrán-Heredia, J., Acero, J. L., and Rubio, F. J. (2000). Rate constants for the reactions of ozone with chlorophenols in aqueous solutions. Journal of Hazardous Materials, 79(3), pp. 271-285.
    Briand, J. F., Jacket, S., Bernard, C., and Humbert, J. F. (2003). Health hazards for terrestrial vertebrates from toxic cyanobacteria in surface water ecosystems. Veterinary Research, 34(4), pp. 361-377.
    Carmichael, W. W., Azevedo, S. M., An, J. S., Molica, J. R., Jochimsen, E. M., Lau, S., Rinehart, K. L., Shaw,G ,R. and Eaglesham, G. K. (2001). Human fatalities from cyanobacteria: chemical and biological evidence for cyanotoxins. Environmental Health Perspectives, 109(7), pp. 645-A335
    Chen, X., Xiao, B., Liu, J., Fang, T., and Xu, X. (2005). Kinetics of the oxidation of MCRR by potassium permanganate. Toxicon, 45(7), pp. 911-917.
    Chen, Y. T., Chen, W. R., Liu, Z. Q., and Lin, T. F. (2017). Reaction pathways and kinetics of a cyanobacterial neurotoxin β-n-methylamino-L-alanine (BMAA) during chlorination. Environmental Science & Technology, 51(3), pp. 1303-1311.
    Chorus; I. and Bartram J. (Ed.). (1999). Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. London, United Kingdom: E & FN Spon.
    Christensen, H. N., Riggs, T. R., Fischer, H., and Palatine, I. M. (1952). Amino acid concentration by a free cell neoplasm; relations among amino acids. Journal of Biological Chemistry, 198(1), pp. 1-15.
    Christensen, H. N. and Riggs, T. R. (1956). Structural evidences for chelation and Schiff's base formation in amino acid transfer into cells. Journal of Biological Chemistry, 220(1), pp. 265-278.
    Coleman, J. E., Ricciuti, C., and Swern, D. (1956). Improved preparation of 9(10),10(9)-ketohydroxystearic acids by oxidation of oleic acid with potassium permanganate in neutral solution. Journal of the American Chemical Societys, 78, pp. 5342-5345.
    Codd, G. A., Edwards, C., Beattie, K. A., Lawton, L. A.,Campbell, D. L., and Bell S. G. (1995). Toxins from cyanobacteria (blue–green algae). In Wiessner, W., Schnepf, E., and Starr, R. C. (Eds.), Algae, environment and human affairs (pp. 1-17). Bristol, England: Biopress Ltd.
    Codd, G. A. (2000). Cyanobacterial toxins, the perception of water quality, and the priorisation of eutrophication control. Ecological Engineering, 16(1), pp. 51-60.
    Codd, G. A., Morrison, L. F., and Metcalf , J. S. (2005). Cyanobacterial toxins: risk management for health protection. Toxicology and Applied Pharmacology, 203(3), pp. 264-272.
    Cox, P. A. and Sacks, O.W. (2002). Cycad neurotoxins, consumption of flying foxes, and ALS-PDC disease in Guam. Neurology, 58(6), pp. 956-959.
    Dash, S., Patel, S., and Mishra, B.K. (2009). Oxidation by permanganate: synthetic and mechanistic aspects. Tetrahedron, 65, pp. 707-739.
    Dittmann, E. and Börner, T. (2005) Genetic contributions to the risk assessment of microcystin in the environment. Toxicology and Applied Pharmacology. 203(3), pp. 192–200.
    Dow, C. S. and Swoboda, U. K. (2000). Cyanotoxins. In Whitton, B. A. and Potts, M. (Eds.), The Ecology of Cyanobacteria (pp. 613-632).
    Retrieved from https://link.springer.com/content/pdf/10.1007%2F0-306-46855-7.pdf
    Duy, T. N., Lam, P. K. S., Shaw, G. R., and Connell, D. W.(2000) Toxicology and risk assessment of freshwater cyanobacterial (blue-green algal) toxins in water. Reviews of Environmental Contamination and Toxicology, 163, pp. 113–186
    Facile, N., Barbeau, B., Prévost, M., and Koudjonou, B. (2000). Evaluating bacterial aerobic spores as a surrogate for giardia and cryptosporidium inactivation by ozone. Water Research, 34(12), pp. 3238-3246.
    Ferrão-Filho, A. da S., and Kozlowsky-Suzuki, B. (2011). Cyanotoxins: bioaccumulation and effects on aquatic animals. Marine drugs, 9(12), pp. 2729-2772.
    Figueiredo, D. R. De., Azeiteiro, U. M., Esteves, S. M., Gonçalves, F. J., and Pereira, M. J. (1988). Microcystin-producing blooms- a serious global public health issue.
    Ecotoxicology and Environmental Safety, 59(2), pp. 151-163.
    Freeman, F. and Karchefski, E. M. (1976). Permanganate ion oxidations: IX. Manganese intermediates (complexes) in the oxidation of 2,4(1H,3H)-pyrimidinediones. Biochimica et Biophysica Acta (BBA)- Nucleic Acids and Protein Synthesis, 447(2), pp 238-245.
    Francis, G. (1878). Poisonous australian lake. Nature, 18, pp. 11-12.
    Funari, E. and Testai, E. (2008). Human Health Risk Assessment Related to Cyanotoxins Exposure. Critical Reviews in Toxicology, 38(2), pp. 97-125.
    Glaze, W. H. (1987). Drinking-water treatment with ozone. Environmental Science & Technology, 21(3), pp. 224-230.
    Gorham, P. R. and Carmichael, W. W. (1988). Hazards of freshwater blue-green algae (cyanobacteria). In Lembi, C. A., and Waaland, J. R. (Eds.), Algae and Human Affairs (pp. 403-431). Cambridge, United Kingdom: Cambridge University Press.
    Gunten, U. (2003). Ozonation of drinking water: part I. oxidation kinetics and product formation. Water Research, 34(7), pp. 3238-3246.
    Haider, S., Naithani, V., Viswanathan, P. N., and Kakkar, P., (2003). Cyanobacterial toxins: a growing environmental concern. Chemosphere, 52(1), pp. 1-21.
    Hamad, B. K., Noor, A. M., and Rahim, A. A., (2011). Removal of 4-chloro-2-methoxyphenol from aqueous solution by adsorption to oil palm shell activated carbon activated with K2CO3. Journal of physical science, 22(1), p. 39
    Hall, T., Hart, J., Croll, B., and Gregory, P. (2000). Laboratory-scale investigations of algal toxin removal by water treatment. Water and Environment Journal, 14(2), pp. 143–149.
    Himberg, K., Keijola, A. M., Hiisvirta, L., Pyysalo, H., and Sivonen, K. (1988). The effect of water treatment processes on the removal of hepatotoxins from Microcystis and Oscillatoria cyanobacteria: a laboratory study. Water Research, 23(8), pp. 979-984.
    Hislop, K. A. and Bolton, J. R. (1999). The photochemical generation of hydroxyl radicals in the UV−vis/Ferrioxalate/H2O2 System. Environmental Science and Technology, 33(18), pp. 3119-3126.
    Hrubec, J. (1998). Quality and Treatment of Drinking Water II (pp.83-141). Springer, Berlin, Heidelberg
    Kaebernick, M. and Neilan, B. A. (2001). Ecological and molecular investigations of cyanotoxin production. FEMS Microbiology Ecology, 35(1), pp. 1-9.
    Keijola, A. M., Himberg, K., Esala, A. L., Sivonen, K., and Hiis‐Virta, L. (1989). Removal of cyanobacterial toxins in water treatment processes: laboratory and pilot‐scale experiments. Environmental Toxicology, 3(5), pp. 643-656.
    Kessel, D. (1959). Increased brain y-aminobutyrate in didminobutyrate intoxication. Federation Proceedings, 18, pp. 258.
    Libby, W. F. (1952). Theory of electron exchange reactions in aqueous solution. The Journal of Physical Chemistry, 56(7), pp. 863-868.
    Ma, J., Graham, N., and Li, G. (1997). Effect of permanganate peroxidation in enhancing the coagulation of surface water- laboratory case studies. Journal of Water Supply: Research and Technology- AQUA, 46(1), pp.1-10.
    Marcus, R. A. (1956a). On the theory of oxidation‐reduction reactions involving electron transfer. I. The Journal of Chemical Physics, 24(5), pp. 966.
    Marcus, R. A. (1956b). Electrostatic free energy and other properties of states having nonequilibrium polarization. I. The Journal of Chemical Physics, 24(5), pp. 979.
    Mack, K. M. and Muenter, J. S. (1977). Stark and zeeman properties of ozone from molecular beam spectroscopy. The Journal of Chemical Physics, 66, pp. 5278-5283.
    Metcalf, J. S., Banack, S. A., Richer, R., and Cox, P. A. (1959). Neurotoxic amino acids and their isomers in desert environments. Journal of Arid Environments. 112, pp. 140-144.
    Miller, A. P. and Tisdale, E. S. (1931). Public health engineering: epidemic of intestinal disorders in Charleston, W. Va., occurring simultaneously with unprecedented water supply conditions. American journal of public health and the nation's health, 21(2), pp. 198-200.
    Mudd, J. B., Leavitt, R., Ongun, A., and McManus, T. T. (1967). Reaction of ozone with amino acids and proteins. Atmospheric Environment, 3(6), pp. 669-681.
    Mushahwar, I. K. and Koeppe, R. E. (1963). Concerning the Metabolism of d-and l-α, γ-diaminobutyric acid-2-C14 in rats. Journal of Biological Chemistry. 238, pp. 2460.
    Nielsen, P. E. (1993). Peptide nucleic acid (PNA): a model structure for the primordial genetic material?. Origins of Life and Evolution of the Biosphere, 23(5-6), pp. 323-327.
    Nelson, K. E, Levy, M., and Miller, S. L. (2000). Peptide nucleic acids rather than RNA may have been the first genetic molecule. Proceedings of the National, 97(8), pp. 3868-3871.
    Newcombe, G. and Nicholson, B. (2004). Water treatment options for dissolved cyanotoxins. Journal of Water Supply: Research and Technology-AQUA, 53(4), pp. 227-239.
    O'Neal, R. M., Chen, C. H., Reynolds, C. S., Meghal, S. K., and Koeppe, R. E. (1968). The “neurotoxicity” of L-2, 4-diaminobutyric acid. Biochem J., 106(3), pp. 699-706.
    Pal, P. R. and Christensen, H. N. (1959). Interrelationships in the cellular uptake of amino acids and metals. Journal of Biological Chemistry. 234(3), pp. 613.
    Pietsch, J., Bornmann, K., and Schmidt, W. (2002). Relevance of intra‐ and extracellular cyanotoxins for drinking water treatment. Acta Hydrochimica et Hydrobiologica, 30(1), pp. 7-15.
    Perez-Benito, J. F., Mata-Perez, F., and Brillas, E. (1987). Permanganate oxidation of glycine: Kinetics, catalytic effects, and mechanisms. Canadian Journal of Chemistry, 65(10), pp. 2329-2337.
    Perez-Benito, J. F. (2011). Permanganate oxidation of α-amino acids: kinetic correlations for the nonautocatalytic and autocatalytic reaction pathways. The Journal of Physical Chemistry, 115(35), pp. 9876-9885.
    Ressler, C., Redstone, P.A., and Erenberg, R.H. (1961). Isolation and Identification of a neuroactive factor from lathyrus latifolius. Science, 134(3473), pp. 188-190.
    Rodríguez, E., Majado, M. E., Meriluoto, J., and Acero, J. L. (2007a). Oxidation of microcystins by permanganate: reaction kinetics and implications for water treatment. Water Research, 41(1), pp. 102-110.
    Rodríguez, E., Sordo, A., Metcalf, J. S., and Acero, J. L. (2007b). Kinetics of the oxidation of cylindrospermopsin and anatoxin-a with chlorine, monochloramine and permanganate. Water Research, 41(9), pp. 2048-2056.
    Rodríguez, E., Onstad, G. D., Kull, T. P., Metcalf, J. S., Acero, J. L., and Von Gunten, U. (2007c). Oxidative elimination of cyanotoxins: comparison of ozone, chlorine, chlorine dioxide and permanganate. Water Research, 41(15), pp. 3381-3393.
    Rositano, J. (1996). The destruction of cyanobacterial peptide toxins by oxidants used in water treatment (Report 110). Retrieved from Urban Water Research Association of Australia.
    Rositano, J., Nicholson, B. C., Pieronne, P. (1998). Destruction of cyanobacterial toxins by ozone. Ozone: Science and Engineering, 20(3), pp. 223-238.
    van Apeldoorn, M. E., van Egmond, H. P., Speijers, G. J. A., and Bakker, G. J. I.(2007). Toxins of cyanobacteria. Molecular Nutrition Food Research, 51(1), pp7–60
    Van Etten, C. H. and Miller, R. W. (1963). The neuroactive factoralpha-gamma diaminobutyric acid in angiospermous seeds. Economic Botany, 17, pp.107-109.
    Veldee, M. V. (1931). An epidemiological study of suspected water-borne gastroenteritis. American Journal of Public Health and the Nation's Health, 21(11), pp. 1227-1235.
    Von Gunten, U. (2003). Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water Research, 37(7), pp. 1443-1467.
    Schleifer, K. H. and Kandler, O. (1972). Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriological Reviews, 36(4), pp. 407-477.
    Shah, A. D., Kim, J. H., and Huang, C. H. (2006). Reaction kinetics and transformation of carbadox and structurally related compounds with aqueous chlorine. Environmental Science & Technology, 40(23), pp. 7228-7238.
    SimBndi, L. I. and Jáky, M. (1973). Mechanism of the permanganate oxidation of unsaturated compounds. Part IV. Kinetic investigation of the oxidation of maleic and fumaric acid. Journal of the Chemical Society, Perkin Transactions 2, (14), pp. 1856-1860.
    Staehelin, J. and Hoigné, J. (1985). Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reactions. Environ Sci Technol, 19(12), pp. 1206-1213.
    Walton, J., Labine, P., and Reidies, A. (1991). The chemistry of permanganate in degradative oxidations. In: Eckenfelder, W. W., Bowers, A. R., and Roth, J. A. (Eds.), First International Symposium for chemical Oxidation: Technologies for the Nineties (pp. 205-221). Lancaster, United Kingdom: Technomic Publishing.
    Waldemer, R. H. and Tratnyek, P.G. (2006) Kinetics of contaminants degradation by permanganate. Environmental Science & Technology, 40, pp. 1055-1061.
    Westrick, J. A., Szlag, D. C., Southwell, B. J., and Sinclair, J (2010). A review of cyanobacteria and cyanotoxins removal/inactivation in drinking water treatment. Analytical and Bioanalytical Chemistry, 397(5), pp. 1705-1714.
    World Health Organization. (2003). Algae and cyanobacteria in fresh water. Guidelines for safe recreational water environments: Vol. 1. Coastal and fresh waters (pp. 136-154). Geneva: World Health Organization.
    Wood, R. (2016). Acute animal and human poisonings from cyanotoxin exposure- a review of the literature. Environment international, 91, pp. 276-282.
    Xu, H., Cooper, W. J., Jung, J., and Song, W. (2011). Photosensitized degradation of amoxicillin in natural organic matter isolate solutions. Water Research, 45(2), pp. 632-638.
    Zurawell, R. W., Chen, H., Burke, J. M., and Prepas, E. E.(2005). Hepatotoxic cyanobacteria: A review of the biological importance of microcystins in freshwater environments. Journal of Toxicology and Environmental Health, Part B , 8(1), pp. 1–37
    Zwolinski, B. J., Marcus, R. J., and Eyring, H. (1955). Inorganic oxidation-reduction reactions in solution electron transfers. Chemical Reviews, 55(1), pp. 157.

    下載圖示 校內:2021-08-31公開
    校外:2021-08-31公開
    QR CODE