簡易檢索 / 詳目顯示

研究生: 黃宣榜
Huang, Hsuan-pang
論文名稱: 利用類似腫瘤胚基因之即時定量反轉錄聚合酶反應以偵測血液中之肝癌細胞
The Detection of Circulating Hepatocellular Carcinoma Cells by Oncofetal-like Genes Real-time RT-PCR
指導教授: 何中良
Ho, Chung-liang
學位類別: 碩士
Master
系所名稱: 醫學院 - 醫學檢驗生物技術學系
Department of Medical Laboratory Science and Biotechnology
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 47
中文關鍵詞: 即時定量聚合酶反應腫瘤胚基因
外文關鍵詞: oncofetal gene, circulating tumor cell, real-time PCR
相關次數: 點閱:88下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 腫瘤胚基因 (oncofetal gene) 係為表現於胚胎時期的基因,隨著發育為正常成體會降低表現或是不表現,而後當腫瘤形成時,其腫瘤胚基因又再次大量表現。一般較為人熟知的腫瘤胚基因有A型胎兒蛋白 (alpha-fetoprotein, AFP) 及聚醣蛋白3 (Glypican-3, GPC3)。在臨床對肝癌的常規診斷中,往往以偵測血清中AFP蛋白表現來做篩檢。而發展中的腫瘤會持續釋放惡性腫瘤細胞進入血液中,少數游離在血液循環的腫瘤細胞往往能夠躲避體內免疫監控 (immune surveillance) 機制的作用進而有可能由周邊血中被偵測到。在先前有研究顯示從癌症患者周邊血中,可以發現到游離於血液中腫瘤細胞的存在進而有可能成為篩檢上的依據之一;另外在肝癌患者周邊血及骨髓中也可以偵測到AFP mRNA。我們利用生物資訊結合實驗室建立的篩選方法也找到了已知為腫瘤胚基因的GPC3及具類似腫瘤胚基因特徵的 Lin28B (lin-28 homolog B) 與 Zic2 (Zinc finger protein of the cerebellum 2)。在本研究中,我們目的想要建立一套方法,透過採集周邊血,偵測血液中肝癌腫瘤細胞所表現的腫瘤胚基因來達到診斷的目的。首先在我們模擬的血液中肝腫瘤細胞,我們利用即時定量聚合酶反應 (Real-time PCR) 測定腫瘤胚基因表現量來評估出偵測的極限;而後我們收集31位非肝病志願者、7位肝硬化、20位HBV與HCV肝炎、以及34位肝癌患者的周邊血,評估腫瘤胚基因在此三種患者中表現量的差異。我們以已知腫瘤胚基因AFP初步完成所建立的流程再依序完成 GPC3、Zic2、Lin28B在模擬與臨床樣本中的表現。結果發現在模擬之下,10^7白血球細胞數的全血混入人類肝癌細胞株HepG2,其偵測到腫瘤胚基因的極限約在一個細胞數。在臨床檢體的表現方面,我們從非腫瘤檢體所測定的最高表現設定門檻值,結果發現AFP唯能表現在一位肝癌患者,另外Zic2及Lin28B則可以各自在3位及5位肝癌患者中被偵測到。AFP偵測表現並未如預期,但結合另外兩種基因共同偵測的方式相較於偵測單一基因仍具前瞻性。接著未來我們希望能夠利用multiplex PCR的方式在單一反應中增加檢體模板量來有效提升偵測上的敏感性,讓我們所發現的基因與建立的方法可以有效能地投入臨床應用。

    Oncofetal genes are generally defined as genes in embryonic cells, down-regulated in normal adult cells, but re-expressed in tumor cells, such as AFP (alpha-fetoprotein) and GPC3 (Glypican-3). In the routine hepatoma diagnosis, the determination of serum AFP has been used. Tumors launched malignant cells into the circulation continuously. A small number of circulating tumor cells escaped from the immune surveillance. Evidences showed that the presence of circulating tumor cells in the peripheral blood of cancer patients can be determined. For example, AFP mRNA was detectable in the peripheral blood and bone marrow of hepatoma patients. Recent studies showed that the well-known GPC3 was a marker of hepatic progenitor cells and of early liver lesions. In addition, we found the oncofetal-like Lin28B (lin-28 homolog B) and Zic2 (Zinc finger protein of the cerebellum 2) by screening experiments combined with bioinformatics. In this study, we build a methodology to detect the oncofetal genes in a small amount of circulating HCC tumor cells. At first, we pooled 10^0-10^5 HepG2 cells into the 10^7 WBC-counts normal peripheral blood respectively to determine the limitation then collected the peripheral blood derived from 31 non liver diseased, 7 cirrhosis, 20 hepatitis, and 34 hepatoma patients. The presence of AFP gene was determined by real-time quantitative PCR. Following the strategy of AFP detections, GPC3, Zic2 and Lin28B will be determined in the spiked circulating tumor cells and in the clinical samples. Up to now, the data showed that these oncofetal genes can be effectively detected in one HepG2 cell pooled with blood cells at least. In clinical samples, AFP was detected in only 1 of 34 hepatoma; the Zic2 was determined in 3 of 34 hepatoma; while the Lin28B was detected in 5 of 34 hepatoma cases. Though the detection rate of well-known AFP was low, the combined detection of AFP, Zic2 and Lin28B in circulating HCC cells is notably more promising than each gene alone. However, the detection of GPC3 had no significant differences between tumor and non-tumor cases. We can increase the detect limitation effectively in the peripheral blood by high-throughput real-time quantitative PCR, our oncofetal-like genes may be powerful and convenient markers in potential clinical applications.

    ABSTRACT....I ABSTRACT (in Chinese)....III ACKNOWLEDGEMENTS....V CONTENTS....VII INDEX OF FIGURES....IX INTRODUCTION....1 Hepatocellular Carcinoma (HCC)....1 Circulating Tumor Cells (CTCs)....1 Oncofetal Gene....3 Alpha-fetoprotein (AFP)....4 Glypican 3 (GPC3)....5 Zinc Finger Protein of The Cerebellum 2 (Zic2)....6 Lin-28 Homolog B (Lin28B)....7 Real-time Polymerase Chain Reaction (real-time PCR)....7 STUDY DESIGN....10 MATERIALS AND METHODS....12 Cell Lines....12 Tissue Samples....12 Peripheral Blood Samples....13 RNA Extraction....14 Reverse Transcription Reaction....15 Polymerase Chain Reaction (PCR)....16 Primers and Probes....16 Serial Dilution Study of Circulating HCC Cells....17 Real-time Quantitative PCR....18 Plasmid Preparation....19 RESULTS....20 Expression of Zic2 and Lin28B in Tumor Cell Lines....20 Expression of Zic2 and Lin28B in Non-tumor and Normal Tissues....20 Expression of Zic2 and Lin28B in Various Tumor / Non-tumor Tissue Pairs....21 Expression of AFP, GPC3, Zic2 and Lin28B in HCC Tumor / Non-tumor Tissues....21 Sensitivity of Designed Probes and Standard Curves....22 Comparison of Expression of Zic2 and Lin28B in Human Fetal and Adult Tissues....23 Quantification of Zic2 and Lin28B in HCC Tumor / Non-tumor Tissue Pairs....24 The Detection Limit of HCC Cells Pooled in Normal Peripheral Blood in vitro....25 Expression of AFP, GPC3, Zic2 and Lin28B in Blood from Clinical Cases....25 DISCUSSION....27 The Oncofetal Characteristics of Zic2 and Lin28B....27 The Expression of Oncofetal-like and Well-known Oncofetal Genes in Hepatocellular Carcinoma....28 The Detection Limits and Usefulness of Oncofetal-like and Well-known Oncofetal Genes in Circulating Hepatocellular Carcinoma Cells....28 The Ability of Oncofetal-like and Well-known Oncofetal Genes in Peripheral Blood Specimens Derived from Clinical Cases....29 Conclusion....30 REFERENCES....32 FIGURES....38 AUTHOR....47

    Abelev GI, Perova SD, Khramkova NI et al. [Embryonal Serum Alpha- Globulin and Its Synthesis by Transplantable Mouse Hepatomas.]. Biokhimiia. 1963;28:625-634
    Aruga J, Inoue T, Hoshino J, Mikoshiba K. Zic2 controls cerebellar development in cooperation with Zic1. J Neurosci. 2002;22:218-225
    Ball D, Rose E, Alpert E. Alpha-fetoprotein levels in normal adults. Am J Med Sci. 1992;303:157-159
    Ban KC, Cao J, Ou C et al. [Expression of glypican-3 mRNA in hepatocellular carcinoma and its significance]. Zhonghua Gan Zang Bing Za Zhi. 2005;13:281, 285
    Baumhoer D, Tornillo L, Stadlmann S et al. Glypican 3 expression in human nonneoplastic, preneoplastic, and neoplastic tissues: a tissue microarray analysis of 4,387 tissue samples. Am J Clin Pathol. 2008;129:899-906
    Brown L, Paraso M, Arkell R, Brown S. In vitro analysis of partial loss-of-function ZIC2 mutations in holoprosencephaly: alanine tract expansion modulates DNA binding and transactivation. Hum Mol Genet. 2005;14:411-420
    Brown LY, Odent S, David V et al. Holoprosencephaly due to mutations in ZIC2: alanine tract expansion mutations may be caused by parental somatic recombination. Hum Mol Genet. 2001;10:791-796
    Brown SA, Warburton D, Brown LY et al. Holoprosencephaly due to mutations in ZIC2, a homologue of Drosophila odd-paired. Nat Genet. 1998;20:180-183
    Capurro M, Filmus J. Glypican-3 as a serum marker for hepatocellular carcinoma. Cancer Res. 2005;65:372; author reply 372-373
    Cristofanilli M, Hayes DF, Budd GT et al. Circulating tumor cells: a novel prognostic factor for newly diagnosed metastatic breast cancer. J Clin Oncol. 2005;23:1420-1430
    Demel U, Tilz GP, Foeldes-Papp Z et al. Detection of tumour cells in the peripheral blood of patients with breast cancer. Development of a new sensitive and specific immunomolecular assay. J Exp Clin Cancer Res. 2004;23:465-468

    Elms P, Siggers P, Napper D et al. Zic2 is required for neural crest formation and hindbrain patterning during mouse development. Dev Biol. 2003;264:391-406
    Elshimali YI, Grody WW. The clinical significance of circulating tumor cells in the peripheral blood. Diagn Mol Pathol. 2006;15:187-194
    Esheba GE, Pate LL, Longacre TA. Oncofetal protein glypican-3 distinguishes yolk sac tumor from clear cell carcinoma of the ovary. Am J Surg Pathol. 2008;32:600-607
    Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292:154-156
    Filmus J. Glypicans in growth control and cancer. Glycobiology. 2001;11:19R-23R
    Filmus J, Capurro M. Glypican-3 and alphafetoprotein as diagnostic tests for hepatocellular carcinoma. Mol Diagn. 2004;8:207-212
    Filmus J, Church JG, Buick RN. Isolation of a cDNA corresponding to a developmentally regulated transcript in rat intestine. Mol Cell Biol. 1988;8:4243-4249
    Franz M, Hansen T, Richter P et al. Complex formation of the laminin-5 gamma2 chain and large unspliced tenascin-C in oral squamous cell carcinoma in vitro and in situ: implications for sequential modulation of extracellular matrix in the invasive tumor front. Histochem Cell Biol. 2006;126:125-131
    Fujimoto T, Miyayama Y, Fuyuta M. The origin, migration and fine morphology of human primordial germ cells. Anat Rec. 1977;188:315-330
    Ge M, Shi D, Wu Q et al. Fluctuation of circulating tumor cells in patients with lung cancer by real-time fluorescent quantitative-PCR approach before and after radiotherapy. J Cancer Res Ther. 2005;1:221-226
    Ghossein RA, Bhattacharya S, Rosai J. Molecular detection of micrometastases and circulating tumor cells in solid tumors. Clin Cancer Res. 1999;5:1950-1960
    Gilboa E. The makings of a tumor rejection antigen. Immunity. 1999;11:263-270
    Gitlin D, Boesman M. Serum alpha-fetoprotein, albumin, and gamma-G-globulin in the human conceptus. J Clin Invest. 1966;45:1826-1838

    Greenberg F, Faucett A, Rose E et al. Congenital deficiency of alpha-fetoprotein. Am J Obstet Gynecol. 1992;167:509-511
    Guo J, Xiao B, Zhang X et al. Combined use of positive and negative immunomagnetic isolation followed by real-time RT-PCR for detection of the circulating tumor cells in patients with colorectal cancers. J Mol Med. 2004;82:768-774
    Guo Y, Chen Y, Ito H et al. Identification and characterization of lin-28 homolog B (LIN28B) in human hepatocellular carcinoma. Gene. 2006;384:51-61
    Hesse E, Musholt PB, Potter E et al. Oncofoetal fibronectin--a tumour-specific marker in detecting minimal residual disease in differentiated thyroid carcinoma. Br J Cancer. 2005;93:565-570
    Higuchi R, Dollinger G, Walsh PS, Griffith R. Simultaneous amplification and detection of specific DNA sequences. Biotechnology (NY). 1992;10:413-417
    Higuchi R, Fockler C, Dollinger G, Watson R. Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology (NY). 1993;11:1026-1030
    Hishinuma M, Ohashi KI, Yamauchi N et al. Hepatocellular oncofetal protein, glypican 3 is a sensitive marker for alpha-fetoprotein-producing gastric carcinoma. Histopathology. 2006;49:479-486
    Hsu HC, Cheng W, Lai PL. Cloning and expression of a developmentally regulated transcript MXR7 in hepatocellular carcinoma: biological significance and temporospatial distribution. Cancer Res. 1997;57:5179-5184
    Hu XC, Chow LW. Detection of circulating breast cancer cells with multiple-marker RT-PCR assay. Anticancer Res. 2001;21:421-424
    Ii M, Yamamoto H, Adachi Y et al. Role of matrix metalloproteinase-7 (matrilysin) in human cancer invasion, apoptosis, growth, and angiogenesis. Exp Biol Med (Maywood). 2006;231:20-27
    Ito H, Kanda T, Nishimaki T et al. Detection and quantification of circulating tumor cells in patients with esophageal cancer by real-time polymerase chain reaction. J Exp Clin Cancer Res. 2004;23:455-464

    Kamiyama T, Takahashi M, Nakagawa T et al. AFP mRNA detected in bone marrow by real-time quantitative RT-PCR analysis predicts survival and recurrence after curative hepatectomy for hepatocellular carcinoma. Ann Surg. 2006;244:451-463
    H, Tsukada H, Oku N. Usefulness of positron emission tomographic visualization for examination of in vivo susceptibility to metastasis. Cancer. 2000;89:1626-1633
    Koyabu Y, Nakata K, Mizugishi K et al. Physical and functional interactions between Zic and Gli proteins. J Biol Chem. 2001;276:6889-6892
    Koyanagi K, Kuo C, Nakagawa T et al. Multimarker quantitative real-time PCR detection of circulating melanoma cells in peripheral blood: relation to disease stage in melanoma patients. Clin Chem. 2005;51:981-988
    Ligato S, Mandich D, Cartun RW. Utility of glypican-3 in differentiating hepatocellular carcinoma from other primary and metastatic lesions in FNA of the liver: an immunocytochemical study. Mod Pathol. 2008;21:626-631
    Masopust J, Kotal L. Fetoprotein: Immunochemical Behavior of an Autonomous Fetal Component in Sera from Human Fetuses. Ann Paediatr. 1965;204:138-140
    Mizejewski GJ. Biological roles of alpha-fetoprotein during pregnancy and perinatal development. Exp Biol Med (Maywood). 2004;229:439-463
    Monk M. Of microbes, mice and man. Int J Dev Biol. 2001;45:497-507
    Moreno JG, Miller MC, Gross S et al. Circulating tumor cells predict survival in patients with metastatic prostate cancer. Urology. 2005;65:713-718
    Motomura Y, Senju S, Nakatsura T et al. Embryonic stem cell-derived dendritic cells expressing glypican-3, a recently identified oncofetal antigen, induce protective immunity against highly metastatic mouse melanoma, B16-F10. Cancer Res. 2006;66:2414-2422
    Mukai M. Occult neoplastic cells and malignant micro-aggregates in lymph node sinuses: review and hypothesis. Oncol Rep. 2005;14:173-175
    Nagai T, Aruga J, Minowa O et al. Zic2 regulates the kinetics of neurulation. Proc Natl Acad Sci U S A. 2000;97:1618-1623
    Nahon JL. The regulation of albumin and alpha-fetoprotein gene expression in mammals. Biochimie. 1987;69:445-459
    Nakatsura T, Yoshitake Y, Senju S et al. Glypican-3, overexpressed specifically in human hepatocellular carcinoma, is a novel tumor marker. Biochem Biophys Res Commun. 2003;306:16-25
    Nielsen J, Christiansen J, Lykke-Andersen J et al. A family of insulin-like growth factor II mRNA-binding proteins represses translation in late development. Mol Cell Biol. 1999;19:1262-1270
    Pantanowitz L, Otis CN. Glypican-3 immunohistochemistry in the ovary. Histopathology. 2008;53:115-117
    Pantel K, Brakenhoff RH, Brandt B. Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nat Rev Cancer. 2008;8:329-340
    Patil MA, Chua MS, Pan KH et al. An integrated data analysis approach to characterize genes highly expressed in hepatocellular carcinoma. Oncogene. 2005;24:3737-3747
    Paul SB, Gulati MS, Sreenivas V et al. Evaluating patients with cirrhosis for hepatocellular carcinoma: value of clinical symptomatology, imaging and alpha-fetoprotein. Oncology. 2007;72 Suppl 1:117-123
    Pilia G, Hughes-Benzie RM, MacKenzie A et al. Mutations in GPC3, a glypican gene, cause the Simpson-Golabi-Behmel overgrowth syndrome. Nat Genet. 1996;12:241-247
    Poirier F, Chan CT, Timmons PM et al. The murine H19 gene is activated during embryonic stem cell differentiation in vitro and at the time of implantation in the developing embryo. Development. 1991;113:1105-1114
    Reichman TW, Bahramipour P, Barone A et al. Hepatitis status, child-pugh classification, and serum AFP levels predict survival in patients treated with transarterial embolization for unresectable hepatocellular carcinoma. J Gastrointest Surg. 2005;9:638-645
    Richards M, Tan SP, Tan JH et al. The transcriptome profile of human embryonic stem cells as defined by SAGE. Stem Cells. 2004;22:51-64
    Sato T, Harao M, Nakano S et al. Circulating tumor cells detected by reverse transcription-polymerase chain reaction for carcinoembryonic antigen mRNA: distinguishing follicular thyroid carcinoma from adenoma. Surgery. 2005;137:552-558
    Shafizadeh N, Ferrell LD, Kakar S. Utility and limitations of glypican-3 expression for the diagnosis of hepatocellular carcinoma at both ends of the differentiation spectrum. Mod Pathol. 2008
    Sood R, Zehnder JL, Druzin ML, Brown PO. Gene expression patterns in human placenta. Proc Natl Acad Sci U S A. 2006;103:5478-5483
    Thomas MB, Zhu AX. Hepatocellular carcinoma: the need for progress. J Clin Oncol. 2005;23:2892-2899

    Toshiya Kamiyama M, Masato Takahashi, MD, Takahito Nakagawa, MD, Kazuaki Nakanishi, MD, Hirofumi Kamachi, MD, Tomomi Suzuki, MD, Tsuyoshi Shimamura, MD, Masahiko Taniguchi, MD, Michitaka Ozaki, MD, Michiaki Matsushita, MD, Hiroyuki Furukawa, MD, and Satoru Todo, MD. AFP mRNA Detected in Bone Marrow by Real-Time Quantitative RT-PCR Analysis Predicts Survival and Recurrence After Curative Hepatectomy for Hepatocellular Carcinoma. Annals of Surgery. 2006;244
    Vogel G, Holden C. Developmental biology. Field leaps forward with new stem cell advances. Science. 2007;318:1224-1225
    Weber T, Lacroix J, Weitz J et al. Expression of cytokeratin 20 in thyroid carcinomas and peripheral blood detected by reverse transcription polymerase chain reaction. Br J Cancer. 2000;82:157-160
    Weksberg R, Squire JA, Templeton DM. Glypicans: a growing trend. Nat Genet. 1996;12:225-227
    Wilkinson MF, Kleeman J, Richards J, MacLeod CL. A novel oncofetal gene is expressed in a stage-specific manner in murine embryonic development. Dev Biol. 1990;141:451-455
    Yang Y, Hwang CK, Junn E et al. ZIC2 and Sp3 repress Sp1-induced activation of the human D1A dopamine receptor gene. J Biol Chem. 2000;275:38863-38869

    下載圖示 校內:2010-08-26公開
    校外:2011-08-26公開
    QR CODE