簡易檢索 / 詳目顯示

研究生: 黃俊嶧
Huang, Chun-Yi
論文名稱: AB堆疊石墨烯的臨界光學性質
Critical optical properties of AB-stacked graphenes
指導教授: 林明發
Lin, Ming-Fa
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2013
畢業學年度: 102
語文別: 中文
論文頁數: 29
中文關鍵詞: AB堆疊石墨烯臨界光學性質
外文關鍵詞: AB-stacked graphenes, critical optical properties
相關次數: 點閱:92下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多層AB堆疊石墨烯,其能帶結構與光學性質可用緊束模型(tight-binding model)及梯度近似(gradient approximation)來作計算。對於一個n_L層的AB堆疊石墨烯,在中能和低頻區會有n_L^2個激發通道。然而,在激發譜裡,偶數層(奇數層)在中能區有一個肩膀結構及n_L個尖峰,在低頻則存在n_L(n_L-1)個峰。隨著層數的增加至n_L層,其結構可在特定區間被找到,且奇數層與偶數層之間的電子結構和光學性質的差異性會降低。當層數增至30(30)層時,其二維AB堆疊石墨烯的光譜在中能(低頻)區幾乎與三維AB堆疊石墨烯相同。

    The band structures and optical properties of AB-stacked multilayer graphenes (MLG) are calculated by the tight-binding model and gradient approximation. For a n_L-layer AB-stacked graphenes, there are about n_L^2 of the excitation channels at both low and middle frequencies. However, in the excitation spectra, n_L (n_L-1) peaks exist at low frequencies for even-layer (odd-layer) systems, and one shoulder and n_L peaks at middle frequency. With increasing n_L, those structures are confined to certain boundaries, and the differences in the electonic structures and optical properties between the odd and even layers are reduced. When n_L grows to 30 (30), the spectra of 2D AB-stacked graphene are almost identical to those of 3D AB-stacked graphite at middle (low) frequencies.

    Abstract------------------------------------------------2 摘要-----------------------------------------------------3 第一章 介紹---------------------------------------------4 第二章 理論和方法----------------------------------------6 第三章 結果與討論----------------------------------------13 第四章 總結---------------------------------------------22 參考文獻--------------------------------------------------23 圖片說明--------------------------------------------------24 成果圖片--------------------------------------------------25

    [1]. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S.V.Dubons, I. V. Grigorieva, and A. A. Firsov, Science 306,666 (2004)
    [2]. K. S. Novoselov, E. Mccann, S. V. Morozov, V. I. Fal’ ko, M. I. Katsnelson, U. Zeitler, D. Jiang, F. Sohedin, and A. K. geim, Nat. Phys. 2,177 (2006)
    [3]. B. Partoens and F. M. Peeters, Phys. Rev. B 74, 075404 (2006)
    [4]. M Koshino, Phys. Rev. B 81, 125304 (2010)
    [5]. S. B. Kumar and J. Guo, App1. Phys. Lett. 98, 222101 (2011)
    [6]. C. L. Lu,and M. F. Lin, “Magnetoelectronic Properties of Graphites” (2005)
    [7]. H. C. Chung, M. H. Lee, C. P. Chung, and M. F. Lin, Opt. Express 19, 23350 (2011)
    [8]. C. W. Chiu, Y. C. Huang, F. L. Shyu, and M. F. Lin, Opt. Lett. 36,3136 (2011)
    [9]. C. W. Chiu, S. H. Lee, S. C. Chen, F. L. Shyu, and M. F. Lin, New J Phys. 12083060 (2010)
    [10]. S. H. Lee, F. L. Shyu, C. W. Chiu, and M. F. Lin, Phys. Lett. A 374 043509 (2010)
    [11]. C. W. Chiu, S. C. Chen, Y. C. Huang, F. L. Shyu, and M. F. Lin, “Critical optical properties of AA-stacked multilayer graphenes” (2013)
    [12]. Rocha CG, Pacheco M, Barticevic Z, Latge A, Phys. Rev. B 70, 233402(2004)
    [13]. F. L. Shyu, Phys. Rev. B 72, 045424(2005)
    [14]. S. Iijima, “Helical microtubeles od graphitic carbon”. Nature 354. 56-58 (1991)
    [15]. R. Satio, G. Dresselhaus, and M. S. Dresselhaus, “Physical properties of carbon nanotubes”, Imperical College Press, London (1998)
    [16]. B. T. Kelly. Physics of graphite. Applied Science: London Englewood, N. J.(1981)

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE