簡易檢索 / 詳目顯示

研究生: 賴佳俊
Lai, Chia-Chun
論文名稱: 利用膽固醇液晶智能材料發展可全白光調控之Bragg-Berry光渦流產生器
Full-color tunable Bragg-Berry vortex generators based on cholesteric liquid crystal smart materials
指導教授: 李佳榮
Lee, Chia-Rong
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 92
中文關鍵詞: 鐵電型液晶膽固醇液晶電致發熱薄膜平面相位元件光渦流軌道角動量
外文關鍵詞: ferroelectric liquid crystal, cholesteric liquid crystal, electro-thermal film, optical vortex, orbital angular momentum
相關次數: 點閱:101下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文將膽固醇液晶填充至具q-plate圓對稱式配向之液晶盒,並將雷射光束照射於樣品上方使雷射反射後獲得隨方位角變化之相位差,成功產生渦流光束。接續調製出兩種旋性的鐵電液晶摻混膽固醇液晶(FLC-CLC)複合智能材料填充入上述液晶盒內,此複合智能材料之Sm*-CLC相變點接近室溫,具備可高度調控光子能隙之特性,透過外加低值電壓以電致熱的方式使光子能隙調控範圍涵蓋全白光波段(400 nm~700 nm),涵蓋範圍高達350 nm,大幅增加了此膽固醇液晶光渦流元件之可工作波長範圍。本實驗第一部分研究乃製作出Bragg-Berry光渦流產生元件(BBVG),利用此元件產生渦流光束,並測量此光束及元件的特性,實驗發現此BBVG具備與膽固醇液晶相同的特性,若入射光並非垂直入射進樣品中,則此元件的反射頻譜會發生位移,此法可小幅調控元件的光子能隙。接著利用麥克森干涉法驗證平面波及球面波經過左旋與右旋的BBVG反射後產生的渦流光之拓樸荷符合理論值l=+2與-2,以及驗證干涉圖案確實會受到干涉光束之間的光程差所影響。第二部分乃致力於調配出可於室溫下調控且涵蓋全白光能隙的液晶材料,由於實驗中需生產兩種旋性的渦流光,因此材料有摻雜6 wt%鐵電型液晶之右旋FLC-CLC及摻雜4 wt%鐵電型液晶的左旋FLC-CLC,並將兩種材料灌回水平配向的ITO液晶盒內進行測試,於室溫T=22.5°C的情況下,右旋及左旋的FLC-CLC材料皆可於低電壓範圍下(≤3.2 V)調控並產生可全白光範圍調控的反射,且反射率與反射波帶皆無太大的衰減或變形。第三部分的研究中將FLC-CLC複合材料回灌入具有圓對稱配向的液晶盒中製成FLC-BBVG光渦流元件,並施加直流電壓調控其反射頻段於紅、綠與藍區,分別使用紅(632.8 nm)、綠(532 nm)及藍(442 nm)三原色的雷射光照射於此三波段之FLC-BBVG樣品上,使反射後的雷射光產生渦旋相位。最後,藉由麥克森干涉法的方式,驗證球面波及平面波產生的渦流光其拓樸荷l值符合理論預測。

    In this thesis, an optical element called Bragg-Berry vortex generator (BBVG) was demonstrated based on ferroelectric liquid crystal and cholesteric liquid crystal (FLC-CLC) smart materials. The BBVG element was obtained by filling with the FLC-CLC materials into the indium-tin-oxide (ITO) glass cells which were pre-coated with a q-plate-like circularly-symmetric photoaligned pattern. After a non-vortex laser beam impinges into the BBVG, a reflective optical vortex beam with an azimuthal-angle(Φ)-dependent phase and thus an orbital angular momentum (OAM) will be obtained if the wavelength of the incident laser is included in the Bragg reflection band of the BBVG. To obtain optical vortex beams with oppositely-twisted phase structures (carrying with ±OAM), two BBVG elements with FLC-CLC mixtures of right- and left-handedness were prepared. The FLC-CLC smart materials can effectively reflect light within the reflection band or photonic bandgap (PBG) which can be easily tune with less sacrifices in reflectance and band shape throughout the full visible region by the application of a low DC voltage range (≤3.2 V) around room temperature. The oppositely-handed FLC-CLC BBVG elements can generate optical vortex beams with oppositely-handed OAM within the full visible region (400~700 nm) by simply tuning the PBG at specific voltages. Herein, the oppositely-handed BBVGs were demonstrated to generate oppositely-handed optical vortex beams with red (R), green (G), and blue (B) colors at different voltages if the incident laser beam has 632.8 nm, 442 nm, and 532 nm, respectively. The interferograms obtained experimentally based on Michelson interferometer were used to determine the OAM characteristics of the vortex beams including the topological charge number l and the twisting direction of the phase surface, which were consistent with the simulated results.

    摘要 I SUMMARY III 誌謝 XII 目錄 XIII 圖目錄 XVI 表目錄 XXI 第一章 緒論 1 第二章 液晶的基礎知識與特性 4 2.1 液晶的起源 4 2.1.1 液晶相態 4 2.2 液晶分類 5 2.2.1 溶致型液晶 5 2.2.2 熱致型液晶 5 2.3 液晶的物理特性 13 2.3.1 光學異向性(雙折射性) 14 2.3.2 介電異向性 16 2.3.3 連續彈性體 18 2.4 溫度與液晶折射率之間關係 19 第三章 渦流光理論與膽固醇液晶光渦流產生器 20 3.1 光的角動量 20 3.1.1 雷射光束之Laguerre-Gaussian 模態 22 3.1.2 光的軌道角動量 23 3.1.3 光的自旋角動量 26 3.1.4 光的總角動量 27 3.2 Bragg-Berry q-plate 28 3.2.1 Berry phase 29 3.2.2 q-plate元件 33 3.2.3 反射式q-plate元件 35 3.3 渦流光干涉 37 3.3-1 螺旋狀干涉 38 3.3-2 叉子狀干涉 41 第四章 鐵電液晶摻雜膽固醇液晶之電致變色原理 43 4.1 電致發熱原理 43 4.2 鐵電型液晶 46 第五章 樣品製備與實驗架設 49 5.1 使用材料介紹 49 5.2 藥品配方 53 5.3 樣品製作 54 5.4 實驗架設 57 第六章 實驗結果與討論 60 6.1 Bragg-Berry光渦流產生器之特性研究 60 6.1.1 光渦流產生元件之光配向特性 61 6.1.2 膽固醇液晶製成的BBVG元件特性 63 6.1.3 幾何相位引致渦流光學特性 68 6.2 電致變色FLC-CLC複合元件特性量測 72 6.2.1 電致發熱片導熱特性 72 6.2.2 電致熱控全白光FLC-CLC複合元件 73 6.3 全白光FLC-BBVG光學特性 81 6.3.1 電致熱控FLCR/L-BBVG 81 第七章 結論與未來展望 85 7.1 結論 85 7.2 未來展望 86 參考資料 87

    1. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, Second edition, Clarendon Press (1993).
    2. T. J. White, S. A. Cazzell, A. S. Freer, D. K. Yang, L. Sukhomlinova, L. Su, T. Kosa, B. Taheri, and T. J. Bunning, “Widely tunable, photoinvertible cholesteric liquid crystals,” Adv. Mater. 23, 1389–1392 (2011).
    3. H. C. Lin, M. S. Chen, and Y. H. Lin, “A review of electrically tunable focusing liquid crystal lenses,” Trans. Electr. Electron. Mater. 12, 234–240 (2011).
    4. Y. Huang, Y. Zhou, C. Doyle, and S. T Wu, “Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility,” Opt. Express 14, 1236–1242 (2006).
    5. F. J. Belintante, “On the current and the density of the electric charge, the energy, the linear momentum and the angular momentum of arbitrary fields,” Physica 7, 449–474 (1940).
    6. M. L. N. Chen, L. J. Jiang, and W. E. I. Sha, “Ultrathin complementary metasurface for orbital angular momentum generation at microwave frequencies,” IEEE Trans. Antennas Propag. 65, 396–400 (2016).
    7. L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
    8. L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital optical angular momentum conversion in liquid crystal “q-plates”: classical and quantum applications,” Mol. Cryst. Liq. Cryst. 561, 48–56 (2012).
    9. L. Marrucci, C. Manzo, and D. Paparo, “Pancharatnam-Berry phase optical elements for wavefront shaping in the visible domain: switchable helical modes generation,” Phys. Rev. Lett. 88, 221102 (2006).
    10. L. Marrucci, “Generation of helical modes of light by spin-to-orbital angular momentum conversion in inhomogeneous liquid crystals,” Mol. Cryst. Liq. Cryst. 488, 148–162 (2008).
    11. A. Rubano, F. Cardano, B. Piccirillo, and L. Marrucci, “Q-plate technology: a progress review,” J. Opt. Soc. Am. 36, 70–87 (2019).
    12. M. V. Berry, “The adiabatic phase and Pancharatnam’s phase for polarized light,” J. Mod. Opt. 34, 1401–1407 (1987).
    13. R. Barboza, U. Bortolozzo, M. G. Clerc, and S. Residori, “Berry phase of light under Bragg reflection by chiral liquid-crystal media,” Phys. Rev. Lett. 117, 053903 (2016).
    14. J. Kobashi, H. Yoshida, and M. Ozaki, “Planar optics with patterned chiral liquid crystals,” Nat. Photonics 10, 389–392 (2016).
    15. J. Kobashi, H. Yoshida, and M. Ozaki, “Polychromatic optical vortex generation from patterned cholesteric liquid crystals,” Phys. Rev. Lett. 116, 253903 (2016).
    16. M. Rafayelyan and E. Brasselet, “Bragg-Berry mirrors: reflective broadband q-plates,” Opt. Lett. 41, 3972–3975 (2016).
    17. M. Rafayelyan, G. Tkachenko, and E. Brasselet, “Reflective spin-orbit geometric phase from chiral anisotropic optical media,” Phys. Rev. Lett. 116, 253902 (2016).
    18. M. Rafayelyan and E. Brasselet, “Spin-to-orbital angular momentum mapping of polychromatic light,” Phys. Rev. Lett. 120, 213903 (2018).
    19. M. Rafayelyan, G. Agez, and E. Brasselet, “Ultrabroadband gradient-pitch Bragg-Berry mirrors,” Phys. Rev. A 96, 043862 (2017).
    20. P. Chen, L. L. Ma, W. Hu, Z. X. Shen, and H. K. Bisoyi, S. B. Wu, S. J. Ge, Q. Li and Y. Q. Lu, “Chirality invertible superstructure mediated active planar optics,” Nat. Commum. 10, 2518 (2019).
    21. M. Yu, Y. Jiang, Y. Shin, J. Jiang, H. Yang, H. Zhang, J. Xue, Q. Li, and D. K. Yang, “Effect of biaxiality on chirality in chiral nematic liquid crystals,” Soft Matter 14, 6530–6536 (2018).
    22. R. B. Meyer, L. Liebert, L. Strzelecki, and P. Keller, “Ferroelectric liquid crystals,” Phys. Lett. 36, L69–71 (1975).
    23. S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Electrically tunable liquid crystal photonic bandgaps,” Adv. Mater. 21, 3915–3918 (2009).
    24. L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, H. Koerner, R. A. Vaia, and T. J. Bunning, “Electro-thermal tuning in a negative dielectric cholesteric liquid crystal material,” J. Appl. Phys. 103, 093107–093101 (2008).
    25. F. Reinitzer, “Beiträge zur kenntnis des cholesterins,” Monatshefte für Chemie 9, 421–41 (1888).
    26. D. K. Yang and S. T. Wu, Fundamentals of liquid crystal devices, Second Edition, John Wiley & Sons. Ltd, Chapters 1–2 (2014).
    27. D. Demus, J. Goodby, G. W. Gray, H. W. Spiess and V. Vill, Handbook of liquid crystals, Wiley-VCH, Chapter 2 (1998).
    28. D. K. Yang and S. T. Wu, Fundamentals of liquid crystal devices, Second Edition, John Wiley & Sons. Ltd, Chapter 3, p.123 (2014).
    29. D. K. Yang and S. T. Wu, Fundamentals of liquid crystal devices, Second Edition, John Wiley & Sons, Ltd, Chapter 4 (2014).
    30. B. E. A. Saleh and M. C. Teich, Fundamentals of photonics, second edition, John Wiley & Sons, Inc. Chapter 6, p. 218 (2007).
    31. D. Demus, J. Goodby, G. W. Gray, and H. W. Spiess, V. Vill, Handbook of liquid crystals, Wiley-VCH, Chapter 3, p. 216 (1998).
    32. F. M. Leslie, Continuum theory for nematic liquid crystals, Springer-Verlag, Chapter 1 (1992).
    33. R. A. Serway, C. J. Moses, and C. A. Moyer, Modern physics, third edition, Thomson Learning, Inc. Chapter 8 (2005).
    34. R. A. Serway, C. J. Moses, and C. A. Moyer, Modern physics, third edition, Thomson Learning, Inc. Chapter 5 (2005).
    35. E. Abramochkin and T. Alieva, “Closed-form expression for mutual intensity evolution of Hermite-Laguerre-Gaussian Schell-model beams,” Opt. Lett. 42, 4032–4035 (2017).
    36. L. Carbone, P. Fulda, C. Bond, F. Brueckner, D. Brown, M. Wang, D. Lodhia, R. Palmer, and A. Freise, “The generation of higher-order Laguerre–Gauss beams for high-precision interferometry,” J. Vis. Exp. 78, e50564 (2013).
    37. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
    38. W. Gerlach and O. Stern, “Der experimentelle nachweis der richtungsquantelung im magnetfeld,” Z. Phys. 9, 349–352 (1922).
    39. E. Hecht, Optics, fifth edition, Addison Wesley, Chapter 8 (2016).
    40. R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50, 115–117 (1936).
    41. M. Harris, C. A. Hill, P. R. Tapster, and J. M. Vaughan, “Laser modes with helical wave fronts,” Phys. Rev. A 49, 3119–3122 (1994).
    42. S. Zheng and J. Wang, “Measuring orbital angular momentum (OAM) states of vortex beams with annular gratings,” Sci. Rep. 7, 40781 (2017).
    43. J. M. Hickmann, E. J. S. Fonseca, W. C. Soares, and S. Chávez-Cerda, “Unveiling a truncated optical lattice associated with a triangular aperture using light’s orbital angular momentum,” Phys. Rev. Lett. 105, 053904 (2010).
    44. L. E. E. de Araujo and M. E. Anderson, “Measuring vortex charge with a triangular aperture,” Opt. Lett. 36, 787–789 (2011).
    45. I. V. Basistiy, M. S. Soskin, and M. V. Vasnetsov, “Optical wavefront dislocations and their properties,” Opt. Commun. 119, 604–612 (1995).
    46. M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, T. J. Malos, and N. R. Heckenberg, “Topological charge and angular momentum of light beams carrying optical vortices,” Phys. Rev. A 56, 4064–4075 (1997).
    47. F. P. Incropera, D. P. Dewitt, T. L. Bergman A. S. Lavine, Fundamental of heats and mass transfer, Sixth edition, John Wiley & Sons (2007).
    48. J. J. Bae, S. C. Lim, G. H. Han, Y. W. Jo, D. L. Doung, E. S. Kim, S. J. Chae, T. Q. Huy, N. V. Luan, and Y. H. Lee, “Heat dissipation of transparent graphene defoggers,” Adv. Funct. Mater. 22, 4819–4826 (2012).
    49. S. Ji, W. He, K. Wang, Y. Ran and C. Ye, “Thermal response of transparent silver nanowire/PEDOT:PSS film heaters,” Small 10, 4951–4960 (2014).
    50. D. K. Yang and S. T. Wu, Fundamentals of liquid crystal devices, Second Edition, John Wiley & Sons. Ltd, Chapter 4 (2014).
    51. M. Yu, Y. Jiang, Y. Shin, J. Jiang, H. Yang, H. Zhang, J. Xue, Q. Li, D. K. Yang, “Effect of biaxiality on chirality in chiral nematic liquid crystals,” Soft Matter 14, 6530–6536 (2018).
    52. R. B. Meyer, L. Liebert, L. Strzelecki, and P. Keller, “Ferroelectric liquid crystals,” Phys. Lett. 36, L69–71 (1975).
    53. S. Pirkl, M. Glogarová, “Ferroelectric liquid crystals with high spontaneous polarization,” Ferroelectrics - physical effects. p. 407–428 (2011).
    54. E. Fatuzzo, G. Harbeke, W. J. Merz, R. Nitsche, H. Roetschi, and W. Ruppel, “Ferroelectricity in SbSI,” Phys. Rev. 127, 2036–2037 (1962).
    55. M. Svensson, B. Helgee, K. Skarpb, and G. Anderssonb, “Effects of nitro substituents on the properties of a ferroelectric liquid crystalline side chain polysiloxane,” J. Mater. Chem. 8, 353–362 (1998).
    56. N. A. Clark and S. T. Lagerwall, “Submicrosecond bistable electro-optic switching in liquid crystals,” Appl. Phys. Lett. 36, 899–901 (1980).
    57. E. Hecht, Optics, fifth edition, Addison Wesley, Chapter 5, p.165–167 (2016).
    58. E. Mavrona, S. Mailis, N. Podoliak, G. D’Alessandro, N. Tabiryan, M. Trapatseli, J. F. Blach, M. Kaczmarek, and V. Apostolopoulos, “Intrinsic and photo-induced properties of high refractive index azobenzene based thin films,” Opt. Mater. Express 8, 420–430 (2018).
    59. R. Gupta, K. D. M. Rao, S. Kiruthika, and G. U. Kulkarni, “Visibly transparent heaters,” ACS Appl. Mater. Interfaces 8, 12559–12575 (2016).
    60. P. Li, J. G. Ma, H. Y. Xu, D. Lin, X. D. Xue, X. Z. Yan, P. Xia, and Y. C. Liu, “Flexible transparent heaters based on silver nanotrough meshes,” J. Alloys Compd. 664, 764–769 (2016).
    61. T. Lin, Y. Yuan, Y. Zhou, W. Fu, H. Huang, L. Yao, F. Fan, and S. Wen, “Bragg reflective polychromatic vector beam generation from opposite-handed cholesteric liquid crystals,” Opt. Lett. 44, 2720–2723 (2019).

    下載圖示 校內:2023-08-19公開
    校外:2025-08-19公開
    QR CODE