| 研究生: |
鄒政霖 Tsou, Cheng-Lin |
|---|---|
| 論文名稱: |
利用滲流控制不同孔隙水壓比下之側推樁土互制行為 Lateral Pile-Soil Interactions in Various Excess Pore Pressure Ratios by Upward Seepage |
| 指導教授: |
張文忠
Chang, Wen-Jong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 土壤液化 、樁土互制 、室內試驗 、p-y 曲線 |
| 外文關鍵詞: | soil liquefaction, soil-pile interaction, laboratory experiment, p-y curve |
| 相關次數: | 點閱:76 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣西岸多屬沖積砂土層,軟弱又同時為潛在液化區,因此樁基礎承受側向載重及土壤液化為近年研究重點。目前已有許多研究利用離心機試驗以及振動台試驗探討液化後的樁土互制關係,但孔隙水壓消散速度快,超額孔隙水壓不易維持。為研究不同超額孔隙水壓比下的樁土互制反應,本研究使用乾淨砂試體,設置超額孔隙水壓比控制系統,透過微型水壓計監測與控制滲流砂土中的孔隙水壓力以維持砂土不同的超額孔隙水壓比。試驗以伺服馬達對模型樁加載側向應力,再分析樁身防水型應變計,探討不同孔隙水壓激發狀態對於側向樁土互制關係的影響。本研究利用砂土滲流提供超額孔隙水壓模擬液化進行單向與反覆加載的長樁側推試驗,基樁的變形反應引用樑理論,以樁身應變計量測曲率算出彎矩,以五次多項式及試驗邊界條件擬合出基樁之彎矩分布函數,再進行二次微分和二次積分取得土壤反力分佈函數及基樁位移分佈函數,兩者之間形成樁土互制曲線(p-y curve),最後整理出不同孔隙水壓狀態下樁土互制曲線與孔隙水壓比間的關係。根據超額孔隙水壓比剖面圖以及歷時圖檢核超額孔隙水壓比控制系統,驗證其能提供試體均勻且穩定的超額孔隙水壓比狀態,並驗證本試驗具備可重覆性後,判斷超額孔隙水壓比控制系統提供了一種新的研究液化砂土的試驗方法。透過該系統的應用,我們能夠模擬不同超額孔隙水壓比狀態下的側向樁土互制反應,進一步深入了解樁基礎在液化環境中的行為。
The western coast of Taiwan is predominantly composed of alluvial sandy deposits, which are both soft and susceptible to liquefaction. As a result, the lateral loading of pile foundations and their response to soil liquefaction have become focal points of research in recent years. Numerous studies have employed centrifuge tests and shake table experiments to investigate the soil-pile interaction after liquefaction. However, the rapid dissipation of pore water pressures poses challenges in maintaining excess pore water pressures. To study the soil-pile interaction under different ratios of excess pore water pressure, this research utilized clean sand specimens and established a control system for excess pore water pressure ratios. Micro-piezometers were employed to monitor and regulate the pore water pressure within upward seepage to maintain various ratios of excess pore water pressure. Servo motor was employed to apply lateral stresses to model pile, and strain gauges installed on the pile shaft were analyzed to explore the influence of different pore pressure stimulation states on the lateral soil-pile interaction. Using upward seepage to simulate liquefaction, both pushover and cyclic loading tests were performed on pile model lateral pushing. The deformation response of the pile was analyzed through beam theory, with the pile moment calculated from curvature measurements using strain gauges. The moment distribution function of the pile was fitted using a fifth-degree polynomial and test boundary conditions. Subsequently, second differentiation and integration were conducted to derive the soil reaction distribution function and the pile displacement distribution function. The interaction between the two formed the soil-pile interaction curve (p-y curve). Ultimately, relationships between different pore water pressure states and the soil-pile interaction curve were established. Through validation of the excess pore water pressure control system by means of excess pore water pressure ratio time chart and sectional views, and upon confirming the repeatability of the experiments, it was determined that the excess pore water pressure control system provides another method for studying liquefied sandy soils.
1. 日本建築學會 (主編) (1988),「建築基礎構造設計指針」,日本建築學會,日本東京
2. 內政部 (2023),「建築物基礎設計規範」
3. 林子媛,「近斷層地震下振動台樁土互制模型實驗」,國立成功大學土木工程學系,碩士論文(2022)
4. 張硯翔,「以邊界應力控制標度槽探討長樁側推下之樁土互制反應」,國立成功大學土木工程學系,碩士論文(2020)
5. 蕭廷翰,「長樁模型於飽和粉土質砂中之反覆加載反應」,國立成功大學土木工程學系,碩士論文(2017)
6. Abdoun, T., Dobry, R., O’Rourke, T. D., & Goh, S. H.(2003) “Pile response to lateral spreads: centrifuge modeling. ”, Journal of Geotechnical and Geoenvironmental engineering, ASCE, 129, 10 , pp.869-878.
7. American Petroleum Institute(API)(2021).“Recommended practice for planning, designing and constructing fixed offshore platforms.”API Report No. 2A-WSD, API, Houston.
8. Broms, B. B. (1964). Lateral resistance of piles in cohesionless soils. Journal of the soil mechanics and foundations division, 90(3), 123-156.
9. Casagrande, A. (1936)“Characteristics of cohesionless soils affecting the stability of slopes and earth fills. ”J. Boston Society of Civil Engineers,reprinted in Contribution to soil mechanics , Boston Society of Civil Engineers , 1940, pp.257-276.
10. Chang, B. J., & Hutchinson,T. C.(2013), “Experimental evaluation of p-y curves considering development of liquefaction.” Journal of geotechnical and geoenvironmental engineering , ASCE, Vol.139, No.4, pp.577-586.
11. Chang, W. J., Chen, J. F., Ho, H. C., & Chiu, Y. F. (2010). “ In situ dynamic model test for pile-supported wharf in liquefied sand.”Geotechnical Testing Journal, Vol.33, No.3, pp.212-224.
12. Chen, C. H., Ko, Y. Y., Chen, C. H., & Ueng, T. S. (2016).“Time-dependent dynamic characteristics of model pile in saturated sand during soil liquefaction.” Geotechnical Engineering, Vol.47, No.2, pp.89-94.
13. Darcy, H. (1856). Les fontaines publiques de la ville de Dijon: exposition et application des principes à suivre et des formules à employer dans les questions de distribution d'eau (Vol. 1). Victor dalmont.
14. Hetényi, M., & Hetbenyi, M. I. (1946). Beams on elastic foundation: theory with applications in the fields of civil and mechanical engineering (Vol. 16). Ann Arbor, MI: University of Michigan press.
15. Lambe, T. W., & Whitman, R. V. (1969). Soil mechanics, 553 pp.
16. Liu, L., & Dobry,R.(1995), “Effect of liquefaction on lateral response of piles by centrifuge model tests.”, NCEER Bullentin, Vol. 9, No. 1, p.8.
17. Madabhushi, G., Haigh, S., & Knappett, J. (2009). Design of pile foundations in liquefiable soils. World Scientific.
18. Matlock, H., & Reese, L. C.(1960), “Generalized solutions for laterally loaded piles.”, Journal of the Soil Mechanics and foundations Division, ASCE, Vol.85, No.5, pp.63-92.
19. McClelland, B., & Focht Jr, J. A. (1958). Soil modulus for laterally loaded piles. Transactions of the american society of civil engineers, 123(1), 1049-1063.
20. Ono, K., Yokota, Y., Ohta, Y., Sawada, Y., Ling, H. I., & Kawabata, T. Lateral Loading Experiments for Pipe–Soil Interactions in Liquefied Sandy Soil. In Pipelines 2017 (pp. 44-53).
21. Reese, L.C., Cox, W., Koop, F.D.(1974), “Analysis of Laterally Loaded Piles in Sand”, Proceeding of the 6th Annual Offshore Technology Conference, Houston, Texas, Vol.2, pp.473-485.
22. Rollins, K. M., Gerber, T. M., Lane, J. D., & Ashford, S. A.(2005) , “Lateral resistance of a full-scale pile group in liquefied sand.”, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.131, No.1, pp.115-125.
23. Seed, H. B. (1979). Soil liquefaction and cyclic mobility evaluation for level ground during earthquakes. Journal of the geotechnical engineering division, 105(2), 201-255.
24. Terzaghi, K. (1925). Erdbaumechanik auf bodenphysikalischer Grundlage. F. Deuticke.
25. Terzaghi, K. (1955). Evalution of conefficients of subgrade reaction. Geotechnique, 5(4), 297-326.
26. Winkler, E., (1867)“Die Lehre Von Elastizitat Und Festigkert(On Elasticity and Fixity)”, Prague.
27. Wilson, D. (1998). “Soil-pile-superstructure interaction in liquefying sand and soft clay.”, Ph.D. dissertation, Univ. of California, Davis, Davis, CA.