簡易檢索 / 詳目顯示

研究生: 徐宛莉
Hsu, Wan-li
論文名稱: 二氧化鈦奈米纖維在染料敏化太陽能電池及光觸媒之研究
The applications of titanium dioxide nanofibers on dye-sensitized solar cells and photocatalysts
指導教授: 陳志勇
Chen, Chih-yung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 88
中文關鍵詞: RBBTiO2奈米棒TiO2奈米管染料敏化太陽能電池
外文關鍵詞: RBB, TiO2 nanotube, dye-sensitized solar cell, TiO2 nanorod
相關次數: 點閱:135下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以自製的二氧化鈦奈米管及奈米棒分別進行製作染料敏化太陽能電池及光觸媒降解偶氮染料Reactive Black B(RBB)染料的研究。在染料敏化太陽能電池方面,以純奈米二氧化鈦纖維製作的電池由於薄膜緻密程度不佳,效果不好。但以混摻奈米二氧化鈦顆粒及纖維所製得的太陽能電池,因奈米二氧化鈦顆粒可提供高表面積及緻密度,再加上奈米二氧化鈦纖維的長度可提供連續導電性,使得光電轉換效率大大提升到7.5%。進一步地,本研究製得第一層為二氧化鈦顆粒狀結構,第二層為奈米二氧化鈦顆粒混合纖維結構的電池時,可提供較多光線反射使染料的光線利用率增加,效率可進一步提升至7.71%。
    在二氧化鈦光觸媒降解RBB方面,高比表面積的二氧化鈦奈米管降解效果比奈米棒來得好,而添加水玻璃時,在450℃一起燒結的二氧化鈦奈米管會產生部分Ti-O-Si鍵結及能隙(band gap)降低,並且形成直徑更小且比表面積更大的型態,能在60分鐘將RBB由200ppm降至46ppm;當燒結溫度提高至650℃時,會有部分金紅石礦(Rutile)晶相出現,使得電子電洞不易再結合,降解效果變好可降解至35.35ppm。

    Both of the nanofibers-nanorods and nanotubes of TiO2 were synthesized to fabricate the dye-sensitized solar cells and applied to RBB photo-degradation. In dye-sensitized solar cells, due to the films prepared by the TiO2 nanofibers were not dense, the efficiency of photo-electrical transformation is low. Mixing with TiO2 nanoparticles and nanorods could have better efficiency of 7.5% photo-electrical transformation because the TiO2 nanoparticles have high specific surface areas and TiO2 nanofiber’s length can offer continuity current channel. Furthermore, when the first layer was prepared by TiO2 nanoparticles and the second layer are prepared by the mixing of the TiO2 nanoparticles with TiO2 nanorods, the efficiency of the photo-electrical transformation would high to 7.71% due to large surface area.
    On the other hands, the photo-degradation rate of RBB induced by TiO2 nanotube was fast than nanorods due to the high specific surface areas of nanotube. When the SiO2 was mixed with TiO2 nanotubes and sintered in 450℃, the new Ti-O-Si bond was appeared from the IR measurement. In addition, the RBB was degradated from 200ppm to 46ppm in 60mins as the SiO2/TiO2 mixtures were used as catalyst. Moreover, as the rutile structure of TiO2, which was sintered in 650℃, was appeared, the degradation effect become better. RBB can be degradated to 35.35ppm in 60min. This result was attributed from the electron and hole can’t recombine in the rutile structure of TiO2.

    目錄 摘要………………………………………………………………………… I Abstract …………………………………………………………………… II 致謝 ……………………………………………………………………… III 目錄 ……………………………………………………………………… IV 圖目錄 ………………………………………………………………… VII 表目錄 …………………………………………………………………… XI 第一章 緒論 …………………………………………………………… 1 1-1 前言 ……………………………………………………………… 1 1-2 太陽能電池 ……………………………………………………… 2 1-3 光觸媒 …………………………………………………………… 4 1-4 研究背景與目的 ………………………………………………… 6 第二章 文獻回顧 ……………………………………………………… 7 2-1 二氧化鈦簡介 …………………………………………………… 7 2-2 染料敏化太陽能電池 ………………………………………… 11 2-2-1 二氧化鈦多孔性薄膜電極………………………………… 15 2-2-2 染料敏化劑………………………………………………… 18 2-2-3 電解質……………………………………………………… 22 2-2-4 相對電極…………………………………………………… 24 2-2-5 太陽能電池電壓-電流輸出特性 ………………………… 25 2-3 二氧化鈦光觸媒 ……………………………………………… 27 2-3-1 二氧化鈦光觸媒原理……………………………………… 27 2-3-2 二氧化鈦混合晶相………………………………………… 29 2-3-3 二氧化鈦-二氧化矽混合系統 …………………………… 30 2-3-4 偶氮染料…………………………………………………… 32 第三章 實驗方法 …………………………………………………… 34 3-1 實驗流程 ……………………………………………………… 34 3-2 實驗藥品 ……………………………………………………… 38 3-3 儀器設備 ……………………………………………………… 39 第四章 結果與討論 ………………………………………………… 41 4-1 二氧化鈦奈米管、奈米顆粒及奈米棒合成…………………… 41 4-1-1 水熱法製備二氧化鈦奈米管……………………………… 42 4-1-2 溶膠凝膠法伴隨水熱法製備二氧化鈦奈米顆粒………… 49 4-1-3 水熱法製備二氧化鈦奈米棒……………………………… 51 4-2 二氧化鈦多孔性薄膜厚度對太陽能電池之表現 …………… 53 4-2-1 二氧化鈦奈米管、奈米顆粒及奈米棒 …………………… 53 4-2-2 二氧化鈦奈米管及奈米棒與顆粒二氧化鈦混摻………… 60 4-2-3 疊加不同型態二氧化鈦…………………………………… 64 4-3 二氧化鈦奈米管之光催化效果 ……………………………… 68 4-3-1 紫外光對RBB之影響 …………………………………… 68 4-3-2 染料RBB檢量線 ………………………………………… 70 4-3-3 管狀二氧化鈦&棒狀二氧化鈦比較 ……………………… 72 4-3-4 加入水玻璃的管狀二氧化鈦……………………………… 74 第五章 結論…………………………………………………………… 84 參考文獻 ……………………………………………………………… 86

    參考文獻
    [1] D. M. Chapin, C. S. Fuller, G. L. Pearson, J. Appl. Phys. 25:676–7 (1954)
    [2] Michael Grtzel, NATURE. VOL 414. 15 NOVEMBER (2001)
    [3] H. Cheng, J. Ma, Z. Zhao, L. Qi, Chem. Mater. 7, 663 (1995)
    [4] Y. F. Zhu, L. Zhang, C. Gao, L. L Cao, J. Mater. Sci. 35, 4049 (2002)
    [5] H. D. Nam, B. H. Lee, S. J. Kim, C. H. Jung, J. H. Lee, S. Park, Jpn. J. Appl. Phys. 37, 4603 (1998)
    [6] B. Sun, Alexandre V. Vorontsov, and Panagiotis G. Smirniotis, Langmuir 19, 3151-3156 (2003)
    [7] S. Kobayashi, K. Hanabusa, N. Hamasaki, M. Kimura, H. Shirai and S. Shinkai, Chem. Mater., 12, 1523–1525 (2000)
    [8] J. H. Jung, H. Kobayashi, K. J. C. Bommel, S. Shinkai and T. Shimizu, Chem. Mater., 14, 1445–1447 (2002)
    [9] C. Hippe, M. Wark, E. Lork and G. Schulz-Ekloff, Microporous Mesoporous Mater., 31, 235–239 (1999)
    [10] D. Gong, C. A. Grimes, O. K. Varghese, W. Hu, R. S. Singh, Z. Chen and E. C. Dickey, J. Mater. Res., 16(12), 3331–3334 (2001)
    [11] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara, Langmuir, 14, 3160–3163 (1998).
    [12] Y. R. Hacohen, and A. Gedanken, Adv. Mater., 12, 1183 (2000).8P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka, and G. D. Stucky, Nature, 396, 152 (1998)
    [13] D.M. Antonelli and J. Y. Ying, Angew. Chem., Int. Ed. Engl.,34, 2014 (1995)
    [14] D. M. Antonelli, Microporous Mesoporous, Mater., 30, 315 (1999)
    [15] Y. Wang, X. Tang, L. Yin, W. Wang, Y. R. Hacohen, and A. Gedanken, Adv. Mater., 12, 1183 (2000).
    [16] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara, Langmuir, 14, 3160–3163 (1998)
    [17] B. D. Yao, Y. F. Chan, X. Y. Zhang, W. F. Zhang, Z. Y. Yang and N. Wang, Appl. Phys. Lett., 82(2), 281–283 (2003)
    [18] L. Kavan, M. Grtzel, J. Rathousky, A. Zukal, J.Electrochem. Soc., 143, 394, (1996)
    [19] B. O’Regan, M. Grtzel, Nature. 353, 737 (1991)
    [20] M. K. Nazeeruddin, A. Kay, I. Radicio, R. Humphry-Baker, E. Mller, P. Liska, N. Vlachopoulos, M. Grtzel, J. Am. Chem. Soc. 115, 6382 (1993)
    [21] 有機與塑膠太陽能電池, 張正華, 李陵嵐, 葉楚平, 楊平華, 五南圖書2007初版
    [22] A. Hagfeldt, M. Grtzel, Chem. Rev. 95, 49 (1995)
    [23] C. J. Barb, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann,V. Shklover, M. Grtzel, J. Am. Ceram. Soc. 80, 3157 (1997)
    [24] N. G. Park, J. van de Lagemaat, A. J. Frank, J. Phys. Chem. B. 104, 8989 (2000)
    [25] N. G. Park, J. van de Lagemaat, A. J. Frank, J. Phys. Chem. B. 104 (2000) 8989
    [26] S. Kambe, S. Nakade, Y. Wada, T. Kitamura, S. Yanagida, J. Mater. Chem. 12, 723 (2002)
    [27] C. J. Barb, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann,V. Shklover, M. Grtzel, J. Am. Ceram. Soc. 80, 3157 (1997)
    [28] P. Wang, C. Klein, R. Humphry-Baker, S. M. Zakeeruddin, M. Grtzel, J. Am. Chem. Soc. 127, 808 (2005)
    [29] D. Kuang, S. Ito, B. Wenger, C. Klein, J. Moser, R. Humphry-Baker, S. M. Zakeeruddin, M. Grtzel, J. Am. Chem. Soc. 128, 4246 (2006)
    [30] K. Leea, V. Suryanarayananb, K. Ho, Sol. Energy Mater. Solar Cells. 90, 2398 (2006)
    [31] M. Adachi, Y. Murata, I. Okada, S. Yoshikawa, J. Electrochem. Soc. 150, G488 (2003)
    [32] C. J. Barb, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann,V. Shklover, M. Grtzel, J. Am. Ceram. Soc. 80, 3157 (1997)
    [33] K. Kalyanasundaram, M. Grtzel, Coord. Chem. Rev. 177, 347 (1998)
    [34] M. K. Nazeeruddin, P. Pechy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, Le Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Grtzel, J. Am. Chem. Soc. 123, 1613 (2001)
    [35] E. M. J. Johansson, M. Hedlund, H. Siegbahn, H. Rensmo, J. Phys. Chem. B. 109, 22256 (2005)
    [36] H. Rensmo, K. Westermark, S. Sdergren, O. Kohle, P. Persson, S.Lunell, H. Siegbahn, J. Chem. Phys. 111, 2744 (1999)
    [37] A. Hagfeldt, M. Grtzel, Chem. Rev. 95, 49 (1995)
    [38] A. Hagfeldt, M. Grtzel, Chem. Rev. 95 (1995) 49
    [39] P. Wang, C. Klein, R. Humphry-Baker, S. M. Zakeeruddin, M. Grtzel, J. Am. Chem. Soc. 127, 808 (2005)
    [40] M. K. Nazeeruddin, A. Kay, I. Radicio, R. Humphry-Baker, E. Muller, P. Liska, N. Vlachopoulos, M. Grtzel, J. Am. Chem. Soc. 115, 6382 (1993)
    [41] J. Ferber, R. Stangl, J. Luther, Sol. Energy Mater. Solar Cells. 53, 29 (1998)
    [42] Jihuai Wu, Zhang Lan, Dongbo Wang, Sancun Hao, Jianming Lin, Yelin Wei, Shu Yin, Tsugio Sato, Chemistry 181, 333-337 (2006)
    [43] J. KANG, W. LI, X. WANG, Y. LIN, X. LI, X. XIAO and S. FANG ,Journal of Applied Electrochemistry 34: 301-304, (2004)
    [44] Y. REN1, Z. ZHANG2, E. GAO1, S. FANG2 and S. CAI1*, Journal of Applied Electrochemistry 31:445-447 (2001)
    [45] Jihuai Wu*, Zhang Lan, Jianming Lin, Miaoliang Huang, Pinjiang Li, Journal of Power Sources 173, 585–591 (2007)
    [46] S. Y. Huang, G. Schlichtho1rl, A. J. Nozik, M. Grtzel, A. J. Frank, J. Phys. Chem. B. 101, 2576 (1997)
    [47] Ryoichi Komiya, Liyuan Han, Ryohsuke Yamanaka, Ashraful Islam and Takehito Mitate, J. Photochem. Photobio. A: Chem, 164, 123-127 (2004)
    [48] N. Papageorgiou, W. F. Maier, M. Grtzel, J. Electrochem. Soc. 144, 876 (1997)
    [49] T. Hoshikawa, M. Yamada, R. Kikuchi, K. Eguchi. J. Electroanal Chem. 577, 339 (2005)
    [50] X. Fang, T. Ma, M. Akiyama, G. Guan, S. Tsunematsu, E. Abe, Thin Solid Film. 472, 242 (2005)
    [51] X. Fang, T. Ma, G. Guan, M. Akiyama, T. Kida, E. Abe, J. Electroanal Chem. 570, 257 (2004)
    [52] F. Pichot, B. A. Gregg, J. Phys. Chem. B. 104, 6 (2000)
    [53] A. Mills, S. L. Hunte, J. Photochem. Photobiol. A:Chem, 108,1 (1997)
    [54] Bo Sun, Alexandre V. Vorontsov, and Panagiotis G. Smirniotis*, Langmuir, 19, 3151-3156 (1993)
    [55] C.Wu, Y. Yue, X. Deng, W. Hua, Z. Gao, Catalysis Today 93-95, 863 (2004)
    [56] M. Yan, F. Chen, J. Zhang, M. Anpo, J Phys. Chem. B 109, 8673 (2005)
    [57] C. C. Wang, J. Y. Ying, Chemistry of Material 11, 3113(1999)
    [58] J. K. Walters, J. S. Rigden, P. D. Dirken, M. E. Simth, W. S. Howells, R. J. Newport, Chem. Phys. Lett. 264. 539(1997)
    [59] A. Matsuda, Y. Kotani, T. Kogure, Matsumisago, T. Minami, J. Am. Ceram. Soc. 83. 229-231(2000)

    下載圖示 校內:2014-08-05公開
    校外:2019-08-05公開
    QR CODE