簡易檢索 / 詳目顯示

研究生: 林建良
Lin, Jian-Liang
論文名稱: 安提基瑟拉機構之系統化復原設計
Systematic Reconstruction Designs of Antikythera Mechanism
指導教授: 顏鴻森
Yan, Hong-Sen
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 185
中文關鍵詞: 安提基瑟拉機構復原設計天文學機構合成古機械
外文關鍵詞: Antikythera mechanism, reconstruction design, astronomy, synthesis of mechanism, ancient machines
相關次數: 點閱:104下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 存在於西元前150至100年間的安提基瑟拉機構,為目前最古老的天文計算機,此齒輪裝置可依照埃及曆法指示日期、展示日、月、及五大行星在黃道上的週期性運動,可調結換算陰陽曆法,亦可預測日月蝕的發生時間。由於出土文物的損壞,該裝置已知的內部機構並不能完全與其外部功能相互對應,有鑑於此,本研究的目的,即在於系統化地復原安提基瑟拉機構之所有可能的設計概念。
    首先,本研究回顧安提基瑟拉機構的歷史文獻典籍與現有復原設計,研究西方天文學、古代行星理論、及具相似功能之古代天文機械的歷史發展,清楚定義安提基瑟拉機構中各子系統適當的設計規格。接著,本研究提出一套系統化的安提基瑟拉機構復原設計方法,並依其流程進行機構的復原合成;基於文獻回顧訂定設計限制,再根據一般化與特殊化的概念,合成出所有符合當代工藝技術與科技理論之可行的設計概念。於本研究中,曆法子系統合成出2種設計概念;月亮子系統合成出2種設計概念;太陽子系統之三種設計規格分別合成出2個、1個、及1個設計概念;行星子系統的兩種設計規格則分別合成出1個和3個設計概念;同時,亦完整推導出每個設計對應的齒數關係式意義。最後,透過各子系統之可行設計的組合評估,歸納出48種安提基瑟拉機構的可行復原設計。
    本研究提出的復原設計方法,可系統化合成出所有可行的安提基瑟拉機構,在新的證據尚未出現、出土之前,可合理推論本文的復原設計其一,應為安提基瑟拉機構的原貌。

    Antikythera mechanism, dated between 150 and 100 BC, is known as the oldest astronomical calculator. This geared instrument is decoded to display the date of Egyptian calendar, to demonstrate the motions of the Sun, the Moon and five planets on the Zodiac, to calculate the luni-solar calendar, and to predict the occurrence times of eclipses. However, owing to the damage of excavation, the incomplete interior structure cannot serve the exterior functions perfectly. Thus, the purpose of this work is to reconstruct all possible design concepts of interior structures of Antikythera mechanism systematically.
    The relevant historical archives and existing reconstruction designs of Antikythera mechanism are reviewed. The western astronomy, the geometrical theories for the motions of heavenly bodies and the development of astronomical instruments with similar functions are investigated to define the required design specifications for each subsystem of Antikythera mechanism. A systematic approach for the reconstruction designs of Antikythera mechanism is presented. Based on literature survey, the required design constraints are concluded. In accordance with the concepts of generalization and specialization, all feasible design concepts that are consistent with the technique standards and science theories of the subject’s time period are synthesized. Two feasible design concepts of the calendrical subsystem are synthesized. Two feasible design concepts of the lunar subsystem are synthesized. Three examples of the lost subsystem for the solar motion are synthesized respectively with two, one and one feasible design concepts. Two examples of the lost subsystem for the planetary motions are synthesized respectively with one and three design concepts. Then, the relationships to evaluate the feasible teeth in each design concept are formulated. In addition, through the evaluation of combinations, 48 reconstruction designs for the interior structure of Antikythera mechanism are created.
    The reconstruction design approach developed in this work synthesizes all feasible design concepts of Antikythera mechanism. It is logical to infer that one of the reconstruction designs should be the original model of mechanism, before the discovery of new excavated evidence.

    摘要 I Abstract II Acknowledgements III Content IV List of Tables VI List of Figures VII List of Symbols XI Chapter 1 Introduction 1 1-1 Motivation 1 1-2 Objectives 5 1-3 Organization of Dissertation 6 Chapter 2 Historical Development 9 2-1 Origin and Excavation 9 2-2 Historical Records 12 2-3 Reconstruction Designs in Modern Time 14 2-4 Summary 21 Chapter 3 Decoding and Analysis of the Mechanism 23 3-1 Decoding of Exterior Appearance 23 3-2 Analysis of Interior Structure 27 3-3 Summary 35 Chapter 4 Ancient Western Astronomy 37 4-1 Historical Development of Western Astronomy 37 4-2 Calendars and Astronomical Cycles 48 4-3 Ancient Astronomical Theories 50 4-4 Summary 56 Chapter 5 Development of Ancient Astronomical Instruments 57 5-1 Ancient Astronomical Instruments 57 5-2 Comparisons with Antikythera mechanism 64 5-3 Summary 65 Chapter 6 Reconstruction Design Approach 67 6-1 Design Constraints 67 6-2 Approach of Reconstruction Design 70 6-3 Summary 84 Chapter 7 Examples of Reconstruction Designs 86 7-1 Reconstruction Designs of Lunar Subsystem 86 7-2 Reconstruction Designs of Lost Solar Motion Subsystem 96 7-2-1 Analysis of Feasible Topological Structures 96 7-2-2 Process of Reconstruction Design 102 7-3 Reconstruction Designs of Lost Planetary Motions Subsystem 116 7-3-1 Analysis of Feasible Topological Structures 116 7-3-2 Process of Reconstruction Design 120 Chapter 8 Prototypes of Reconstruction Designs 133 8-1 Interior Structure 133 8-2 Detail Designs 136 8-3 Computer Simulation 141 8-4 Summary 141 Chapter 9 Conclusions and Suggestions 147 References 151 Appendix A 156 Appendix B 181 Vita 183 自述 184 Copyright Statement 185

    [1] Price, D. de S., An Ancient Greek Computer, Scientific American, pp.60-67, 1959.
    [2] Price, D. de S., Gears from the Greeks: The Antikythera Mechanism – A calendar computer from ca. 80 BC., Science History Publications, New York, 1974.
    [3] Price, D. de S., On the Origin of Clockwork, Perpetual Motion Device and the Compass, United States National Museum Bulletin, Vol.218, No.6, pp.81-112, 1959.
    [4] Edmunds, M. and Morgan, P., The Antikythera Mechanism: still a Mystery of Greek Astronomy?, Astron. Geophys., Vol.41, pp.6.10-6.17, 2000.
    [5] Wright, M. T., A Planetarium Display for the Antikythera Mechanism, Horological Journal, Vol.144, No.5, pp.169-173, 2002.
    [6] Wright, M. T. and Bromley, A. G., Towards a New Reconstruction of the Antikythera Mechanism, Proc. Conf. Extraordinary Machines and Structures in Antiquity, Patras, 2001.
    [7] Wright, M. T., In the Steps of the Master Mechanic, Proc. Conf. Ancient Greece and the Modern World, University of Patras, pp.86-97, 2002.
    [8] Wright, M. T., Epicyclic Gearing and the Antikythera Mechanism, part 1, Antiquarian Horology, Vol.27, pp.270-279, 2003.
    [9] Wright, M. T., The Scholar, the Mechanic and the Antikythera Mechanism, Bulletin of the Scientific Instrument Society, United Kingdom, No.80, pp.4-11, 2004.
    [10] Wright, M. T., The Antikythera Mechanism: a New Gearing Scheme, Bulletin of the Scientific Instrument Society, United Kingdom, No.85, pp.2-7, 2005.
    [11] Wright, M. T., Epicyclic Gearing and the Antikythera Mechanism, part 2, Antiquarian Horology, Vol.29, pp. 51-63, 2005.
    [12] Wright, M. T., Counting Months and Years: the Upper Back Dial of the Antikythera Mechanism, Bulletin of the Scientific Instrument Society, No.87, pp. 8-13, 2005.
    [13] Wright, M. T., The Antikythera Mechanism and the Early History of the Moon Phase Display, Antiquarian Horology, Vol.29 No.3, pp.319-329, 2006.
    [14] Wright, M. T., Understanding the Antikythera Mechanism, Proc. Conf. Ancient Greek Technology, Athens, pp.49-60, 2006.
    [15] Wright, M. T., The Antikythera Mechanism Reconsidered, Interdisciphinary Science Review, Vol.32, No.1, pp.27-43, 2007.
    [16] Freeth, T., The Antikythera Mechanism: 1. Challenging the Classic Research, Mediterranean Archaeology & Archaeometry 2, pp.21-35, 2002.
    [17] Freeth, T., The Antikythera Mechanism: 2. Is It Posidonius Orrery ? , Mediterranean Archaeology & Archaeometry 2, pp.45-58, 2002.
    [18] T. Freeth et al., Decoding the Ancient Greek Astronomical Calculator Known as the Antikythera Mechanism, Nature, Vol.444, pp.587-891, 2006.
    [19] T. Freeth et al., Calendars with Olympiad Display and Eclipse Prediction on the Antikythera Mechanism, Nature, Vol.454, pp.614-617, 2008.
    [20] Freeth, T., Decoding an Ancient Computer, Scientific American, Vol. 301, No. 6, pp.79-83, 2009.
    [21] Kotsier, T., Phase in the Unraveling of the Secrets of the Gear System of the Antikythera Mechanism, International Symposium on History of Machines and Mechanisms, edited by H.S. Yan and M. Ceccarelli, Proceedings of HMM 2008, Springer, Netherlands, pp.269-294, 2008.
    [22] Rossi, C., Russo, F. and Russo, F., Ancient Engineers’ Inventions: Precursors of the Present, Springer-Verlag, New York, 2009.
    [23] Marchant, J., Decoding the Heavens – Solving the Mystery of the World’s First Computer, William Heinemann, Great Britain, 2008.
    [24] Vasiliki, F., The Antikythera mechanism: Historical Reference and Astronomical Extensions, Aristotle University of Thessaloniki Department of Physics Sections of Astrophysics, Astronomy and Mechanics, 2010.
    [25] Evans, J. Carman, C. C. and Thorndike, A. S., 2010, Solar Anomaly and Planetary Displays in the Antikythera Mechanism, Journal for the History of Astronomy, Vol.42, pp.1-39.
    [26] Waerden, B. L., Greek Astronomical Calendars I. The Parapegma of Euctemon, Archive for History of Exact Sciences, Vol.29, No.2, pp.101-114, 1983.
    [27] Wilson R., Astronomy through the Age – The Story of the Human Attempt to Understand the Universe, Taylor & Francis, UK, 1997.
    [28] Varcouleurs, G (Translator: Lee, X. F.), Shi Jie Tian Wen Xue Jian Shi, Ming Wen Book Co. Ltd., Taiwan, 1987.
    伏古拉爾著,李曉風譯,世界天文學簡史,明文書局,台灣,1987年。
    [29] Varcouleurs, G (Translator: Lee, X. F.), Tian Wen Xue Jian Shi, Ming Wen Book Co. Ltd., Taiwan, 1990.
    伏古拉爾著,李曉風譯,天文學簡史,明文書局,台灣,1990年。
    [30] Zheng, Y. and Yu, Z. K., Shi Jian Yu Li Fa, Yin Hegu, Taiwan, 1995.
    鄭瑩,余宗寬,時間與曆法,銀禾文化事業有限公司,台灣,1995年。
    [31] http://www.witchcraft.com.au/egyptian-witchcraft.html, Accessed 10 April 2011.
    [32] http://emergent-culture.com/preview-relating-web-bot-synchronicity-mayan-calendar-the-dna-and-future-forecasting/, Accessed 10 April 2011.
    [33] Alexander Jones, The Adaptation of Babylonian Methods in Greek Numerical Astronomy, Isis, Vol.82, No.3, pp.441-453, 1991.
    [34] http://biologos.org/blog/the-firmament-of-genesis-1-is-solid-but-thats-not-the-point/, Accessed 10 April 2011.
    [35] Ridderstad, M., Evidence of Minoan Astronomy and Calendrical Practices, arXiv.org, Cornell University Library, pp.1-42, 2009.
    [36] McGee, M. and Shanks, M., Ancient Greece: Archaeology Unlocks the Secrets of Greece’s Past, National Geographic Investigates, Washington, DC, November 2006.
    [37] http://www.dichotomistic.com/logic_dichotomies_history_one.html, Accessed 10 April 2011.
    [38] Linton, C.M., From Eudoxus to Einstein: A History of Mathematical Astronomy, Cambridge University, New York.
    [39] Dreyer, J. L. E., A History of Astronomy from Thales to Kepler, Dover Publications, Inc., United States, 1953.
    [40] Field, J. V. and Wright, M. T., 1985, Gears from the Byzantines: a portable sundial with calendrical gearing, Annals of Science 42, pp.87-138.
    [41] Bedini, S. A. and Maddison F. R., Mechanical Universe: The Astrarium of Giovanni de Dondi, Transactions of American Philosophical Society, Vol.56, No.5, pp.1-69, 1966.
    [42] Reti, L., The Unknown Leonardo, McGraw – Hill Book Co., England, 1974.
    [43] http://www.siris.nl/nieuws/article/27723/Astrarium-de-Dondi-nieuwe-aanwinst-van-museum-Asten, Accessed 5 May 2011.
    [44] http://libweb5.princeton.edu/visual_materials/maps/globes-objects/hmc05.html, Accessed 5 May 2011.
    [45] Yan, H. S., A Methodology for Creative Mechanism Design, Mechanism and Machine Theory, Vol.27, No.3, pp.235-242, 1992.
    [46] Yan, H. S., Creative Design of Mechanical Devices, Springer-Verlag, Singapore, 1998.
    [47] Yan, H. S., Reconstruction Designs of Lost Ancient Chinese Machinery, Springer, Netherland, 2007.
    [48] Yan, H. S. and Hsiao, K. H., Reconstruction Design of the Lost Seismoscope of Ancient China, Mechanism and Machine Theory, Vol.42, No.12, pp.1601-1617. , 2007.
    [49] Yan, H. S. and Wu, L. I., Mechanisms (in Chinese), Dong Hua Books, 3rd edition, Taipei, 2006.
    [50] Fitzpatrick, R., A Modern Almagest: An Updated Version of Ptolemy’s Model of the Solar System, The University of Texas (online), 2010.
    [51] Ptolemy C., (Translator: Toomer, G. J.), Ptolemy’s Almagest, Princeton University Press, United States, 1998.

    下載圖示 校內:2014-08-22公開
    校外:2014-08-22公開
    QR CODE