簡易檢索 / 詳目顯示

研究生: 吳榮堂
Wu, Jung-Tang
論文名稱: 銀墨水製備及以噴墨系統在軟性基板上進行銀導線製備之研究
Preparation of Silver Inks and Fabrication of Silver Conductive Lines on Flexible Substrates By Direct Ink-jet Printing
指導教授: 許聯崇
Hsu, Lien-Chung Steve
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 145
中文關鍵詞: 硝酸銀奈米銀線噴墨系統乙二醇蒸氣軟性基板
外文關鍵詞: Silver nitrate, Silver nanowire, Ink-jet printing, ethylene glycol vapor, flexible substrate
相關次數: 點閱:95下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的第一部分是將硝酸銀溶液利用噴墨系統進行噴墨,再以乙二醇蒸氣於200 ℃進行還原而得到銀薄膜與銀導線。使用這種還原方式可以把硝酸銀直接轉換成銀。藉由XRD、TGA、EDS等分析,證明轉換出來的物質確實為銀。最後,配置最高濃度(14 M)的硝酸銀溶液進行噴墨與還原,所得到的導線以四點探針量測得到電阻率為7.314 × 10-5  cm。

    本論文的第二部分是添加高分子添加劑PVP ( Polyvinyl pyrrolidone )於硝酸銀溶液中,藉由高分子添加劑PVP來幫助硝酸銀墨水黏度的增加,減少高濃度硝酸銀溶液析出於噴頭並進一步改善噴墨品質。隨著添加量的增加,對導線的成形也有顯著的幫助。除此之外,也藉由表面處理與基板溫度的改變進一步改善導線的成形。所量得銀導線的電阻率為2.71 × 10-5  cm。

    本論文的第三部分是利用三乙基胺作為還原劑與保護劑,製備奈米銀粒子。所得的奈米銀粒子粒徑為2.10 ~ 4.65 nm,由XRD、TGA、EDS進行鑑定,確定所得的奈米粒子為銀。使用20 wt%的奈米銀懸浮液經150 ℃的熱處理,可以得到電阻率為8.09 x 10-5  cm的銀薄膜。

    本論文的第四部分是利用DP ( 1-Dimethylamino-2-propanol )去製備導電銀墨水,並在PET軟性基板上進行噴墨製程。在溶液的製備上,使用EG ( Ethylene glycol )與EA ( Ethanol )的混合溶液去改善coffee-rings的形成,並以XRD來確認銀在低溫下的轉換效果。利用硝酸銀/DP墨水進行噴墨製程,在100 ℃下進行熱處理,所得到的銀導線電阻率為1.37 × 10-5  cm。

    本論文的第五部分是以添加奈米銀線製備硝酸銀/奈米銀線墨水,利用奈米銀線降低硝酸銀所需的添加量,應用於噴墨製程。由於奈米銀線可以增加墨水的黏度,在銀導線的製備上,不僅可以得到所需的細線寬,也由於添加奈米銀線於墨水中,在20 wt%硝酸銀/奈米銀線墨水濃度下,銀導線的電阻率可達7.3 × 10-5  cm。

    First, we use a novel approach, ethylene glycol vapor reduction, to fabricate conductive silver tracks directly from silver nitrate solution by inkjet printing. The silver nitrate precursor can be reduced in ethylene glycol vapor to form silver at low temperatures. X-ray diffraction (XRD), thermogravimetric analysis (TGA), and energy dispersive spectrometric (EDS) analysis results indicate that the silver nitrate has been converted to silver completely. Using a high concentration silver nitrate solution, continuous silver conductive lines with a resistivity of 7.314 × 10-5  cm has been produced, which is relatively close to the resistivity of bulk silver.

    Second, a high molecular weight organic compound, poly(N-vinyl-2-pyrrolidone) (PVP), was added to silver nitrate to fabricate silver conductive lines and arrays by inkjet printing on flexible Kapton® substrates. With the assistance of PVP, the dimension of conductive lines can be controlled more accurately. In addition, the morphological control and resolution of arrays and lines were further improved by using UV/O3 treatment of substrates and changing the substrate temperature. The silver nitrate/PVP inks can be reduced in ethylene glycol vapor to form silver conductive lines at low temperatures. Using a high concentration of silver nitrate/PVP ink, continuous and smooth silver conductive lines with a resistivity of 2.71 × 10-5  cm have been produced. Their resistivity is close to the resistivity of bulk silver.

    Third, silver nanoparticles were synthesized by chemical reduction from silver nitrate using triethylamine as the protecting and reducing agents simultaneously. The average size of the silver nanoparticles was about 2.10 – 4.65 nm, which allowed low-temperature sintering of the metal. X-ray diffraction (XRD), thermogravimetric analysis (TGA), and energy dispersive spectrometric (EDS) analysis results indicate that silver nitrate has been converted to silver nanoparticles completely. Using a 20 wt% silver nanoparticles suspension with thermal treatment at 150 oC, silver films with a resistivity of 8.09 x 10-5  cm have been produced, which is close to the resistivity of bulk silver.

    Fourth, 1-Dimethylamino-2-propanol (DP) was added to silver nitrate to fabricate silver conductive lines by ink-jet printing at low sintering temperatures on flexible PET substrates. Using an optimal ratio of a mixed solvent (ethanol and ethylene glycol), the morphology of the pattern surface and the formation of coffee-rings could be controlled. X-ray diffraction (XRD) analysis indicated that the AgNO3/DP inks were converted to silver completely at low temperatures. Using the AgNO3/DP inks, continuous and smooth silver conductive lines with a resistivity of 1.37 + 0.44 × 10-5  cm were fabricated at 100 oC by an ink-jet printing system. This resistivity was close to the resistivity of bulk silver.

    Fifth, the silver nanowires (AgNW) were added to silver nitrate of form a binary ink to fabricate silver conductive lines by inkjet printing on a flexible Kapton® substrate. Because the viscosity increased with the increasing silver nanowires, the dimension of conductive lines can be controlled more accurately. In addition, using the 20 wt% of AgNO3/AgNW inks, continuous and smooth silver conductive lines with a resistivity of 7.3 + 0.44 × 10-5  cm have been produced by an ink-jet printing system. This resistivity was close to the resistivity of bulk silver.

    總目錄 中文摘要 Ⅰ 英文摘要 Ⅲ 致謝 Ⅵ 總目錄 Ⅷ 表目錄 ⅩⅤ 圖目錄 ⅩⅥ 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 2 第二章 文獻回顧與原理 4 2-1 直接輸出技術與其應用 4 2-1-1 直接輸出技術的簡介4 2-1-1-1 聚焦離子束製程技術 4 2-1-1-2 奈米壓印技術 6 2-1-1-3 微/奈碳針直接輸出 7 2-1-1-4 噴墨製程技術 8 2-1-2 噴墨製程的應用 8 2-1-2-1 有機薄膜電晶體術 9 2-1-2-2 無線射頻辨識系統 11 2-1-2-3 有機太陽能電池 12 2-2 噴墨製程用墨水的合成方法 13 2-2-1 前驅物路徑 13 2-2-2 分散路徑 13 2-2-2-1 高分子保護劑 14 2-2-2-2 含硫醇的保護劑 15 2-2-2-3 含酸基的保護劑 16 2-2-2-4 含胺基的保護劑 18 2-3 噴墨製程原理與使用方法 20 2-3-1 連續式噴墨設備 20 2-3-2 自控式噴墨設備 21 2-3-2-1 熱氣泡式噴墨技術 22 2-3-2-2 壓電式噴墨技術 23 2-4 噴墨製程的銀導線燒結與轉換方式 26 2-4-1 熱轉換方式 26 2-4-2 光轉換方式 26 2-4-3 直接轉換方式 28 2-5 奈米銀線合成的原理 31 2-5-1以Pt為晶種合成奈米銀線 31 2-5-2以硝酸銀或銀相關化合物為晶種合成奈米銀線 32 2-5-3以TiO2作為光觸媒進行奈米銀線的合成 34 第三章 實驗方法與步驟 36 3-1 藥品與儀器 36 3-1-1 藥品 36 3-1-2 儀器 37 3-2 實驗流程 39 3-2-1 經噴墨系統製備銀導線並藉乙二醇蒸氣還原 39 3-2-1-1 硝酸銀墨水的製備 39 3-2-1-2 Kapton®基板的表面處理 39 3-2-1-3 以乙二醇蒸氣進行銀薄膜的製備 39 3-2-1-4 以乙二醇蒸氣進行銀導線的製備 40 3-2-2 硝酸銀/PVP墨水以噴墨系統製備銀導線 42 3-2-2-1 硝酸銀/PVP墨水的製備 42 3-2-2-2 Kapton®基板的表面處理與量測 42 3-2-2-3 利用硝酸銀/PVP墨水進行銀薄膜的製備 42 3-2-2-4 以硝酸銀/PVP墨水進行銀導線的製備 43 3-2-3 以三乙基胺製備銀奈米粒子並用於低溫燒結 44 3-2-3-1 奈米銀懸浮液的製備 44 3-2-3-2 奈米銀粒子的燒結 44 3-2-4 以硝酸銀/DP墨水在高分子基板上藉由噴墨製程與低溫轉化製備銀導線 46 3-2-4-1 硝酸銀/DP墨水的製備 46 3-2-4-2 硝酸銀/DP墨水基本性質的量測 46 3-2-4-3 利用硝酸銀/DP墨水進行銀薄膜的製備 46 3-2-4-4 利用硝酸銀/DP墨水進行銀導線的製備 47 3-2-5以硝酸銀/奈米銀線在高分子基板上藉由噴墨製程製備銀導線 48 3-2-5-1 奈米銀線的合成 48 3-2-5-2 硝酸銀/奈米銀線墨水的製備 48 3-2-5-3 Kapton®基板的表面處理與量測 49 3-2-5-4 利用硝酸銀/奈米銀線墨水進行銀薄膜與銀導線的製備 49 3-3 結構鑑定與分析 51 3-3-1高解析分析電子顯微鏡. 51 3-3-2 紫外-可見光吸收光譜分析 51 3-3-3 X光繞射分析 51 3-3-4 穿透式電子顯微鏡觀察 52 3-3-5 能量分散光譜儀分析 52 3-3-6 黏度計分析 52 3-3-7 百格膠帶測試 53 3-3-8 接觸角量測儀分析 54 3-4 銀薄膜與銀導線性質與分析 56 3-5-1 熱重分析儀 56 3-5-2 掃瞄式電子顯微鏡 56 3-4-3 場放射型掃描式電子顯微鏡 56 3-4-4 原子力顯微鏡 57 3-4-5 光學顯微鏡 57 3-4-6 新表面粗操儀 57 3-4-7 四點探針 58 3-4-8 二點探針 58 3-5 噴墨系統 59 第四章 結果與討論 61 4-1 經噴墨系統製備銀導線並藉乙二醇蒸氣還原之研究 61 4-1-1乙二醇蒸氣還原與銀墨水性質 62 4-1-2 乙二醇蒸氣還原銀薄膜性質鑑定 63 4-1-3 乙二醇蒸氣還原經噴墨系統製備銀導線性質鑑定 67 4-2 硝酸銀/PVP墨水以噴墨系統製備銀導線之研究 73 4-2-1 硝酸銀/PVP墨水性質 74 4-2-2 利用UV/O3處理的Kapton®基板表面性質並利用噴墨系統製備銀導線 78 4-2-3 藉由不同基板溫度製備細線寬銀導線並量測其電性 83 4-3 以三乙基胺製備銀奈米粒子並用於低溫燒結的研究 87 4-3-1 利用三乙基胺進行奈米銀粒子製備的研究 88 4-3-2 以三乙基胺製備奈米銀懸浮液經熱處理後電性的研究 92 4-4 以硝酸銀/DP墨水在高分子基板上藉由噴墨製程與低溫轉化製備銀導線之研究 98 4-4-1 以乙二醇與乙醇混合液製備硝酸銀/DP墨水的研究 99 4-4-2 藉由控制噴墨參數製備銀導線的研究 104 4-4-3 銀導線電阻率的量測與應用 109 4-5硝酸銀/奈米銀線墨水以噴墨系統製備銀導線之研究 113 4-5-1 奈米銀線的製備 115 4-5-2 硝酸銀/奈米銀線墨水的製備與應用 122 4-5-3 硝酸銀/奈米銀線墨水的噴墨製程 129 第五章 結論 136 參考文獻 138 表目錄 Table 2-1-1 Different process characteristics 4 Table 4-1-1 Resistivity of silver film prepared from ethylene glycol vapor reduction 66 Table 4-1-2. Resistivities of silver lines prepared by inkjet printing from different silver nitrate concentrations by ethylene glycol vapor reduction 71 Table 4-2-1 Contact angles of silver nitrate solutions on Kapton® with different UV/O3 treatment time 78 Table 4-4-1 Resistivity of the silver films fabricated by spin-coating from different solvent ratios (DP:EG:EA) with 1M AgNO3 sintered at 100 ℃ for 60 min 102 Table 4-4-2 Resistivity, contact angle and line width of silver conductive lines fabricated by ink-jet printing from different sintering temperatures on various flexible substrates 112 Table 4-5-1 The formulations of silver nitrate/ silver nanowire inks 123 Table 4-5-2 The contact angle and surface tension of silver nitrate/silver nanowire inks 128 圖目錄 Figure 2-1-1 focused ion beam system with a liquid-metal ion source 5 Figure 2-1-2 Three major technology of the nanoimprint lithography 6 Figure 2-1-3 Schematic representation of DPN 7 Figure 2-1-4 Optical micrographs of (a) a fully printed TFT array, (b) gate layer, and (c) data layer 9 Figure 2-1-5 (a) Schematic of the device structure. (b) the ink-jet printed single line of the Ag conductive track.(c) the optical images of the printed TFT array (d) the optical image showing an all ink-jet printed single TFT on the PES 10 Figure 2-1-6 (a) Schematic representation of ink-jet printed flexible SWCNT TFT. (b) Optical micrograph of the flexible SWCNT TFT 10 Figure 2-1-7 The wireless-sensor transmitter prototype on a paper substrate, using silver inkjet-printing technology 11 Figure 2-2-1 The synthesis of Ag nanoparticles from PVP 14 Figure 2-2-2 The synthesis of Ag nanoparticles from TSA 15 Figure 2-2-3 Experimental schemes for direct synthesis of silver nanoparticles in fully organic phase through in situ ligand exchange 17 Figure 2-2-4 Synthetic procedure for silver nanoparticles 17 Figure 2-2-5 Synthetic silver nanoparticles with amine group 18 Figure 2-3-1 Continuous type ink-jet system 21 Figure 2-3-2 Thermal bubble-jet type ink-jet system 22 Figure 2-3-3 Schematic of a squeeze mode piezoelectric ink-jet printhead 23 Figure 2-3-4 Piezoelectric type ink-jet system 24 Figure 2-4-1 redox-reaction between silver neodecanoate and hydroquinone 27 Figure 2-4-2 Argon plasma system 29 Figure 2-5-1 Growth mechanism of Ag nanostructures in the presence of Pt catalyst and PVP 31 Figure 2-5-2 Proposed Mechanism for the Formation of Ag Nanowires 33 Figure 2-5-3 Schematic illustration of the two-step polyol process 33 Figure 2-5-4 Schematic illustration of the shape-controlled synthesis of silver nanostructures under shielding atmosphere by the polyol process 34 Figure 2-5-5 Proposed reaction for forming Au nanowires 35 Figure 3-2-1 Experimental setup of the ethylene glycol vapor reduction 41 Figure 3-3-1 Diagram of cutting squares 53 Figure 3-3-2 Classification of adhesion test results 54 Figure 3-5-1 Experimental setup for the observation of droplet formation includes a power supply, piezoelectric inkjet printhead, wave generator, strobe delay, and CCD camera 60 Figure 4-1-1 The viscosities of different concentrations of silver nitrate solutions in water 63 Figure 4-1-2 XRD diffraction pattern of the silver film prepared from ethylene glycol vapor reduction 64 Figure 4-1-3 TGA thermograms of the silver film prepared from ethylene glycol vapor reduction 65 Figure 4-1-4 SEM micrograph and EDS pattern of the silver film prepared from ethylene glycol vapor reduction at 250 oC 67 Figure 4-1-5 SEM micrographs of silver line patterns prepared by ink-jet printing using concentrations of silver nitrate solutions of 1, 5, 10, and 14 M and reduced at 250 °C for 10 min by ethylene glycol vapor 69 Figure 4-1-6 SEM micrographs of silver array patterns prepared by inkjet printing with different concentrations of silver nitrate solutions and reduced at 250 oC for 10 min by ethylene glycol vapor: (a) 5M ; (b) 14 M 70 Figure 4-2-1 TGA thermograms of the silver lines with different silver nitrate/PVP weight ratios prepared from ethylene glycol vapor reduction 75 Figure 4-2-2 Viscosity of different concentrations of silver nitrate in the silver nitrate/PVP (20/1) solutions 76 Figure 4-2-3 XRD diffraction pattern of the silver film prepared from ethylene glycol vapor reduction 77 Figure 4-2-4 Optical microscopic images of silver arrays printed on Kapton® substrate at different UV/O3 treatment time 80 Figure 4-2-5 Optical microscopic images of silver lines inkjet printed on Kapton® substrate at room temperature as a function of inter-spacing distance between dots and UV/O3 treatment time 81 Figure 4-2-6 Optical microscopic images of silver lines inkjet printed on Kapton® substrate with different silver nitrate concentrations and different substrate temperatures 84 Figure 4-2-7 Resistivity of silver conductive lines prepared by inkjet printing from different silver nitrate concentrations with and without PVP by ethylene glycol vapor reduction 85 Figure 4-3-1 TEM micrographs of silver nanoparticles prepared from different AgNO3/TEA ratios : (a) AgNO3 : TEA = 1 : 1 ; (b) AgNO3 : TEA = 1 : 3 ; (c) AgNO3 : TEA = 1 : 5 ; (d) AgNO3 : TEA = 1 : 10 89 Figure 4-3-2 XRD diffraction patterns of silver nanoparticles prepared from different AgNO3/TEA ratios : (a) AgNO3 : TEA = 1 : 1 ; (b) AgNO3 : TEA = 1 : 3 ; (c) AgNO3 : TEA = 1 : 5 ; (d) AgNO3 : TEA = 1 : 10 90 Figure 4-3-3 UV-Vis absorption spectra of silver nanoparticles suspension prepared from different AgNO3/TEA ratios : (a) AgNO3 : TEA = 1 : 1 ; (b) AgNO3 : TEA = 1 : 3 ; (c) AgNO3 : TEA = 1 : 5 ; (d) AgNO3 : TEA = 1 : 10 91 Figure 4-3-4 (a) TEM micrographs of silver nanoparticles prepared from AgNO3 : TEA = 1 : 3 (b) TEM image by High Resolution TEM (c) Particle size distribution of silver nanoparticles (d) EDS pattern 93 Figure 4-1-5 TGA thermogram of the silver nanoparticles prepared from AgNO3 : TEA = 1 : 3 94 Figure 4-3-6 SEM morphologies of 20 wt% silver nanoparticles suspension sintered at (a) 100 oC; (b) 125 oC; (c) 150 oC; (d) 200 oC for 1 h 95 Figure 4-3-7 Resistivities of silver films prepared by spin-costing of 20 wt% of suspension with different sintering temperatures 96 Figure 4-3-8 Resistivities of silver films prepared by spin-costing and sintered at 200 oC with different concentrations 97 Figure 4-4-1 The viscosity of solvents with different mixing ratios 100 Figure 4-4-2 XRD diffraction patterns of silver tracks sintered at 100 oC for 60 min from 1M AgNO3/DP inks with different solvent ratios 101 Figure 4-4-3 XRD diffraction patterns of silver tracks sintered at different temperatures for 60 min from 1M AgNO3/DP inks 103 Figure 4-4-4 The viscosity of different concentrations of AgNO3/DP inks with the solvent ratio of DP: EG: EA = 2: 1: 1 104 Figure 4-4-5 Microscopic images of silver lines printed on PET substrates at room temperature: (a) Ldroplets = 140 μm (b) Ldroplets = 120 μm (c) Ldroplets = 100 μm (d) Ldroplets = 80 μm (e) Ldroplets = 60 μm (f) Ldroplets = 40 μm (Ldroplets: The inter-spacing distance between dots) 105 Figure 4-4-6 Microscopic images of silver lines printed on PET substrates with different inter-spacing distance between dots at different substrate temperatures 107 Figure 4-4-7 (a) Microscopic images of ink-jet printed silver tracks sintered at 100 oC for 60 min, (b) SEM image and (c) the higher resolution SEM 108 Figure 4-4-8 The optical microscopy image shows the contact angle for AgNO3/DP ink on the PET substrate 109 Figure 4-4-9 Microscopic images of silver patterns printed on PET substrates at room temperature 110 Figure 4-5-1 The schematic diagrams of silver films prepared by using (a) a silver nitrate ink, (b) a silver nitrate/silver nanowire hybrid ink 114 Figure 4-5-2 TEM micrographs of silver nanoparticles and nanowires prepared from low molecule of PVP ( MW = 10000) : (a) AgNO3 : PVP = 1 : 10 ; (b) AgNO3 : PVP = 1 : 5 ; (c) AgNO3 : TEA = 1 : 3. and high molecule of PVP ( MW = 58000) : (d) AgNO3 : PVP = 1 : 10 ; (e) AgNO3 : PVP = 1 : 5 ; (f) AgNO3 : TEA = 1 : 3 116 Figure 4-5-3 TEM micrographs of silver nanowires prepared from different reductive temperature : (a) 160 ℃ ; (b) 170 ℃ ; (c) 180 ℃ 117 Figure 4-5-4 TEM micrographs of silver nanowires prepared from different reactive time : (a) 30 min ; (b) 45 min ; (c) 60 min ; (d) 120 min 119 Figure 4-5-5 (a) EDS micrographs of silver nanowires prepared from AgNO3 : PVP = 1 : 3 (b) XRD pattern 120 Figure 4-5-6 UV-Vis absorption spectra of silver suspensions prepared from PVP with different molecular weights 121 Figure 4-5-7 (a) The viscosity of different concentrations of silver nitrate/silver nanoiure inks with the ratio of AgNO3 : AgNW = 8 : 2. (b) The viscosity of solvents with different mixing ratios with the concentration of 20 wt% 124 Figure 4-5-8 XRD diffraction patterns of silver lines produced by ethylene glycol vapor reduction for 1 h from different concentrations of silver nitrate/silver nanowire hybrid inks 126 Figure 4-5-9 SEM micrographs of silver film prepared by drop using concentrations of silver nitrate/silver nanowire inks of 5 wt% and reduced at 200 °C for 60 min by ethylene glycol vapor at (a) low (b) high magnification 127 Figure 4-5-10 Microscopic images of silver lines printed on Kapton® substrates at room temperature: (a) Ldroplets = 120 μm (b) Ldroplets = 100 μm (c) Ldroplets = 80 μm (d) Ldroplets = 60 μm (e) Ldroplets = 40 μm (Ldroplets: The inter-spacing distance between dots) 130 Figure 4-5-11 Microscopic images of silver lines printed on Kapton® substrate with different concentration of silver nitrate/silver nanowire inks at different substrate temperatures 131 Figure 4-5-12 Microscopic images of silver lines printed on Kapton® substrate with different silver nitrate/silver nanowire mixing ratio at different substrate temperatures 133 Figure 4-5-13 Resistivities of silver lines prepared by inkjet printing from different concentrations of silver nitrate/silver nanowire inks by ethylene glycol vapor reduction 134 Figure 4-5-14 Resistivities of silver lines prepared by inkjet printing from different silver nitrate/silver nanowire mixing ratio by ethylene glycol vapor reduction 135

    參考文獻
    1. Tseng, A. A. Small 2005, 1, 924.
    2. Gerlach, R.; Utlaut, M. Proceedings of SPIE, Int. Society for Optical Eng. 2001, 4510, 2001, 96.
    3. Melngailis, J. Handbook of VLSI Lithography, 2nd ed. (Ed.: J. N. Helbert), Noyes, Park Ridge, NJ, 2001, 791.
    4. Tseng, A. A. J. Micromech. Microeng. 2004, 14, R15.
    5. Telari, K. A.; Rogers, B. R.; Fang, H.; Shen, L.; Weller, R. A.; Braski, D. N. J. Vac. Sci. Technol. B 2002, 20, 590.
    6. Morita, T.; Kometani, R.; Watanabe, K.; Kanda, K.; Haruyama, Y.; Hoshino, T.; Kondo, K.; Kaito, T.; Ichihashi, T.; Fujita, J.; Ishida, M.; Ochiai, Y.; Tajima, T.; Matsui, S. J. Vac. Sci. Technol. B 2003, 21, 2737.
    7. Allameha, S. M.; Yao, N.; Soboyejo, W. O. Scripta Mater. 2004, 50, 915.
    8. Chou, S. Y.; Krauss, P. R.; Renstrom, P. J. Appl. Phys. Lett. 1995, 67, 3114.
    9. Otto, M.; Bender, M.; Hadam, B.; Spangenberg, B.; Kurz, H. Microelectron. Eng. 2000, 53, 233.
    10. Otto, M.; Bender, M.; Hadam, B.; Spangenberg, B.; Kurz, H. Microelectron. Eng. 2001, 57-58, 361.
    11. Xia, Y.; G. Whitesides, M. Angew. Chem. Int. Ed. 1998, 37, 550.
    12. Falconnet, D.; Csucs, G. Biomaterials 2006, 27, 3044.
    13. Lin, S. C. Sens. Actuators 2004, B 99, 174.
    14. Piner, R.D.; Zhu, J.; Xu, F.; Hong, S.; Mirkin, C. A. Science, 1999, 283, 661.
    15. Hong, S.; Zhu, J.; Mirkin, C. A. Science 1999, 286, 523.
    16. Hong, S.; Mirkin, C. A. Science 2000, 288, 1808.
    17. Durr, M.; Biedermann, A.; Hu, Z.; Hofer, U.; Heinz, T. F. Science 2002, 296, 1838.
    18. Calvert, P. Chem. Mater. 2001, 13, 3299.
    19. Basaran, O. A. AIChE J. 2002, 48, 1842.
    20. de Gans, B. J.; Schubert, U. S. Macromol. Rapid Commun. 2003, 24, 659.
    21. Jung, H. C.; Cho, S. H.; Joung, J. W.; Oh, Y. S. J. Electron. Mater. 2007, 36, 9.
    22. de Gans, B. J.; Duineveld, P. C.; Schubert, U. S. Adv. Mater. 2004, 16, 203.
    23. Yang,Y.; Chang, S. C.; Bharathan, J.; Liu, J. J. Mater. Sci.-Mater. Electron. 2000, 11, 89.
    24. Cheng, K.; Yang, M. H.; Chiu, W. W. W.; Huang, C. Y.; Chang, J.; Ying, T. F.; Yang, Y.; Macromol. Rapid Commun. 2005, 26, 247.
    25. Bidoki1, S. M.; Lewis, D. M.; Clark, M.; Vakorov, A.; Millner, P. A.; McGorman, D. J. Micromech. Microeng. 2007, 17, 967.
    26. Krebs, F. C. Sol. Energy Mater. Sol. Cells 2009, 93, 394.
    27. Ahn, B. Y.; Duoss, E. B.; Motala, M. J.; Guo, X.; Park, S. I.; Xiong,Y.; Yoon, J.; Nuzzo, R. G.; Rogers, J. A.; Lewis, J. A. Science 2009, 323, 1590.
    28. Arias, A. C.; Daniel, J.; Krusor, B.; Ready, S.; Sholin, V.; Street, R. J. Soc. Inf. Disp. 2007, 15, 485.
    29. Kim, D.; Lee, S. H.; Jeong, S.; Moonz, J. Electrochem. Solid State Lett. 2009, 12, 195.
    30. Takenobu, T.; Miura1, N.; Lu, S. Y.; Okimoto, Asano1, H., T.; Shiraishi, M.; Iwasa, Y. Appl. Phys. Express 2009, 2, 025005.
    31. Gamerith, S.; Klug, A.; Scheiber, H.; Scherf, U.; Moderegger, E.; List, E. J. W. Adv. Funct. Mater. 2007, 17, 3111.
    32. Amin, R.; Li, Y.; Rushi, V.; Manos, M. T. IEEE Antennas Propag. Mag. 2009, 51, 13.
    33. Gizachew, Y.T.; Escoubas, L.; Simon, J.J.; Pasquinelli, M.; Loiret, J.; Leguen, P.Y.; Jimeno, J.C.; Martin, J.; Apraiz, A.; Aguerre, J.P. Sol. Energy Mater. Sol. Cells 2011, 95, S70.
    34. 王鉦源,以化學還原法製備奈米級銀鈀微粉,國立成功大學化學工程學系碩士論文, 2002.
    35. Hsu, S.L.C.; Wu, R.T. Mater. Lett. 2007, 61, 3719.
    36. Grijalva, A. S.; Urbina, R. H.; Silva, J. F. R.; Borja, M. A.; Barraza, F. F. C.; Amarillas, A. P. Mater. Res. Bull. 2008, 43, 90.
    37. Wang, H.; Qiao, X.; Chen, J.; Ding, S. Colloid Surf. A-Physicochem. Eng. Asp. 2005, 256, 111.
    38. Tsuji, M.; Jiang, P.; Hikino, S.; Lim, S.; Yano, R.; Jang, S. M.; Yoon, S. H.; Ishigami, N.; Tang, X.; Kamarudin, K. S. N. Colloid Surf. A-Physicochem. Eng. Asp. 2008, 317, 23.
    39. Wang, X.; Zhang, S.; Zhang, Z. Mater. Chem. Phys. 2008, 107, 9.
    40. Wang, A.; Yin, H.; Ren, M.; Liu, Y.; Jiang, T. Appl. Surf. Sci. 2008, 254, 6527.
    41. Jiang, C.; Cardin, D. J.; Tsang, S. C. Chem. Mater. 2008, 20, 14.
    42. Wu, R.T.; Hsu, S.L.C. Mater. Res. Bull. 2008, 43, 1276.
    43. He, S.; Yao, J.; Jiang, P.; Shi, D.; Zhang, H.; Xie, S.; Pang, S.; Gao*, H. Langmuir 2001, 17, 1571.
    44. Tan, Y.; Wang, Y.; Jiang, L.; Zhu, D. J. Colloid Interface Sci. 2002, 249, 336.
    45. Lee, K. J.; Lee, Y. I.; Shim, I. K.; Joung, J.; Oh Y. S. J. Colloid Interface Sci. 2006, 304 92.
    46. Suganuma, K.; Wakuda, D.; Hatamura, M.; Nogi, M. IEEE Nanotechnology Magazine 2010, 4, 20.
    47. Wang, W.; Efrima, S.; Regev, O. Langmuir 1998, 14, 602.
    48. Lin, Z.; Teng, X.; Yang, H. Langmuir 2003, 19, 10081.
    49. Stoeva, S.; Klabunde, K. J.; Sorensen, C. M.; Dragieva, I. J. Am. Chem. Soc. 2002, 124, 2305.
    50. Shim, I. K.; Lee, Y. I.; Lee, K. J.; Joung, J. Mater. Chem. Phys. 2008, 110 316.
    51. Yamamoto, M.; Kashiwagi, Y.; Nakamoto M. Langmuir 2006, 22, 8581.
    52. Chen, M.; Wang, L. Y.; Han, J. T.; Zhang, J. Y.; Li, Z. Y.; Qian, D.J. J. Phys. Chem. B 2006, 110, 11224.
    53. Ho, C. H.; Tobis, J.; Sprich, P.; Thomann, R.; Tiller, J. C. Adv. Mater. 2004, 16, 957.
    54. Kuo, P. L.; Chen, W. F. J. Phys. Chem. B 2003, 107, 11267.
    55. Leff, D. V.; Brandt, L.; Heath, J. R. Langmuir 1996, 12, 4723.
    56. Jana, N. R.; Peng, X. J. Am. Chem. Soc. 2003, 125, 14280.
    57. Hiramatsu, H.; Osterloh, F. E. Chem. Mater. 2004, 16, 2509.
    58. Chen, F.; Zhong, Z.; Xu,X. J.; Luo, J. J. Mater. Sci. 2005, 40, 1517.
    59. 單子睿,壓電式噴墨系統之液滴型態控制研究及其數值的模擬,國立成功大學材料科學與工程學系所碩士論文, 2002.
    60. 蔡銘修,壓電噴墨系統之液滴行為及噴墨品質研究,國立成功大學材料科學與工程學系所博士論文, 2010.
    61. 林建樺,擠壓管式壓電制動噴墨頭之微液滴噴射型為動力分析研究,航空太空工程學系碩士論文, 2005.
    62. Perelaer, J.; Hendriks, C. E.; de Laat, A. W. M.; Schubert, U. S. Nanotechnology 2009, 20, 165303.
    63. Wu, Y.; Li, Y.; Ong, B. S. J. Am. Chem. Soc. 2007, 129, 1862.
    64. Lu, C. A.; Lin, Pang; Lin, H. C.; Wang, S. F. Jpn. J. Appl. Phys. 2007, 46, 251.
    65. Valeton, J. J. P.; Hermans, K.; Bastiaansen, C. W. M.; Broer, D. J.; Perelaer, J.; Schubert, U. S.; Crawforde, G. P.; Smith, P. J. J. Mater. Chem. 2010, 20, 543.
    66. Jahn, S. F.; Blaudeck, T.; Baumann, R. R. Chem. Mater. 2010, 22, 3067.
    67. Perelaer, J.; de Gans, B. J.; Schubert, U. S. Adv. Mater. 2006, 18, 2101.
    68. Reinhold, I.; Hendriks, C. E.; Eckardt, R.; Kranenburg, J. M.; Perelaer, J.; Baumann, R. R.; Schubert, U. S. J. Mater. Chem. 2009, 19, 3384.
    69. Yung, K. C.; Wu, S. P.; Liem, H. J. Mater. Sci. 2009, 44, 154.
    70. Wu, J. T.; Hsu, S. L. C.; Tsai, M. H.; Hwang, W. S. Thin Solid Films 2009, 517, 5913.
    71. Gao, Y.; Jiang, P.; Song, L.; Liu, L.; Yan, X.; Zhou, Z.; Liu, D.; Wang, J.; Yuan, H.; Zhang, Z.; Zhao X.; Dou, X.; Zhou, W.; Wang, G.; Xie S. J. Phys. D: Appl. Phys. 2005, 38, 1061.
    72. Tsuji, M.; Nishizawa, Y.; Matsumoto, K.; Miyamae, N.; Tsuji, T.; Zhang, X. Colloid Surf. A-Physicochem. Eng. Asp. 2007, 293, 185.
    73. Tsuji, M.; Matsumoto, K.; Jiang, P.; Matsuo, R.; Tang, X. L.; Kamarudin, K. S. N. Colloid Surf. A-Physicochem. Eng. Asp. 2008, 316, 266.
    74. Sun, Y.; Gates, B.; Mayers, B.; Xia, Y. Nano Lett. 2002, 2, 165.
    75. Wang, Z.; Liu, J.; Chen, X.; Wan, J.; Qian, Y. Chem. Eur. J. 2005, 11, 160.
    76. Gou, L.; Chipara, M.; Zaleski, J. M. Chem. Mater. 2007, 19, 1755.
    77. Ni, K.; Chen, L.; Lu, G. Electrochem. Commun. 2008, 10, 1027.
    78. Tang, X. ; Tsuji, M. ; Jiang, P. ; Nishio, M. ; Jang, S. M. ; Yoon, S. H. Colloid Surf. A-Physicochem. Eng. Asp. 2009, 338 33.
    79. Sun, Y. ; Xia, Y. Adv. Mater. 2002, 14, 833.
    80. Chen, C.; Wang, L.; Jiang, G.; Yang, Q.; Wang, J.; Yu, H.; Chen, T.; Wang, C.; Chen, X. Nanotechnology 2006, 17, 466.
    81. Jiang, P.; Li, S. Y.; Xie, S. S.; Gao, Y.; Song, L. Chem. Eur. J. 2004, 10, 4817.
    82. Wei, Q.; Li, B.; Li, C.; Wang, J.; Wang, W.; Yang , X. J. Mater. Chem. 2006, 16, 3606.
    83. Lu, Y. C.; Chou, K. S.; Nogami, M. Mater. Chem. Phys. 2009, 116, 1.
    84. Chen, C.; Wang, L.; Yu, H.; Jiang, G.; Yang, Q.; Zhou, J.; Xiang, W.; Zhang, J. Mater. Chem. Phys. 2008, 107, 13.
    85. Tung, H. T.; Chen, I. G.; Song, J. M.; Yen, C. W. J. Mater. Chem. 2009, 19, 2386.
    86. Tung, H. T.; Song, J. M.; Nien, Y. T.; Chen, I. G. Nanotechnology 2008, 19, 455603.
    87. Chen, T. K.; Chen, W. T.; Yang, M. C.; Wong, M. S. J. Vac. Sci. Technol. B 2005, 23, 2261.
    88. Tsai, M. H.; Hwang, W. S. Mater. Trans. 2008, 49, 331.
    89. Kim, D.; Jeong, S.; Park, B. K.; Moon, J. Appl. Phys. Lett. 2006, 89, 264101.
    90. Lee, D. J.; Oh, J. H.; Bae, H. S. Mater. Lett. 2010, 64, 1069.
    91. Van den Berg, A. M. J.; de Laat, A. W. M.; Smith, P. J.; Perelaer, J.; Schubert, U. S. J. Mater. Chem. 2007, 17, 677.
    92. Kim, D.; Jeong, S.; Moon, J. Mol. Cryst. Liquid Cryst. 2006, 459, 45.
    93. Lee, S. H.; Shin, K. Y.; Hwang, J. Y.; Kang, K. T.; Kang, H. S. J. Micromech. Microeng. 2008, 18, 075014.
    94. Soltman, D.; Subramanian, V. Langmuir 2008, 24, 2224.
    95. Stringer J.; Derby, B. Langmuir 2010, 26, 10365.
    96. Chen, F.; Zhong, Z.; Xu, X. J.; Luo, J. J. Mater. Sci. 2005, 40, 1517.
    97. Frattini, A.; Pellegri, N.; Nicastro, D.; de Sanctis, O. Mater. Chem. Phys. 2005, 94, 148.
    98. Doggart, J.; Wu, Y.; Zhu, S. Appl. Phys. Lett. 2009, 94, 163503.
    99. Kim, D.; Jeong, S.; Lee, S. H.; Moon, J.; Song. J. K. Synth. Met. 2009, 159, 1381.
    100. Lim, J. A.; Lee, W. H.; Lee, H. S.; Lee, J. H.; Park, Y. D.; Cho, K. Adv. Funct. Mater. 2008, 18, 229.
    101. Sun, Y.; Xia, Y. Science 2002, 298, 2176.
    102. Smith, P. J.; Shin, D. Y.; Stringer, J. E.; Derby, B. J. Mater. Sci. 2006, 41, 4153.
    103. Stringer, J.; Derby, B. J. Eur. Ceram. Soc. 2009, 29, 913.
    104. Gizachew, Y.T.; Escoubas, L.; Simon, J.J.; Pasquinelli, M.; Loiret, J.; Leguen, P.Y.; Jimeno, J.C.; Martin, J.; Apraiz, A.; Aguerre, J.P. Sol. Energy Mater. Sol. Cells 2011, 95, S70.
    105. Kandlikar, S. G.; Steinke, M. E. Int. J. Heat Mass Transf. 2002, 45 3771.
    106. Chen, C.; Wang, L.; Li, R.; Jiang, G.; Yu, H.; Chen, T. J. Mater. Sci. 2007, 42, 3172.
    107. Chen, D.; Qiao, X.; Qiu, X.; Tan, F.; Chen, J.; Jiang, R. J. Mater. Sci.-Mater. Electron. 2010, 21, 486.

    無法下載圖示 校內:2022-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE