| 研究生: |
吳榮堂 Wu, Jung-Tang |
|---|---|
| 論文名稱: |
銀墨水製備及以噴墨系統在軟性基板上進行銀導線製備之研究 Preparation of Silver Inks and Fabrication of Silver Conductive Lines on Flexible Substrates By Direct Ink-jet Printing |
| 指導教授: |
許聯崇
Hsu, Lien-Chung Steve |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 145 |
| 中文關鍵詞: | 硝酸銀 、奈米銀線 、噴墨系統 、乙二醇蒸氣 、軟性基板 |
| 外文關鍵詞: | Silver nitrate, Silver nanowire, Ink-jet printing, ethylene glycol vapor, flexible substrate |
| 相關次數: | 點閱:95 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文的第一部分是將硝酸銀溶液利用噴墨系統進行噴墨,再以乙二醇蒸氣於200 ℃進行還原而得到銀薄膜與銀導線。使用這種還原方式可以把硝酸銀直接轉換成銀。藉由XRD、TGA、EDS等分析,證明轉換出來的物質確實為銀。最後,配置最高濃度(14 M)的硝酸銀溶液進行噴墨與還原,所得到的導線以四點探針量測得到電阻率為7.314 × 10-5 cm。
本論文的第二部分是添加高分子添加劑PVP ( Polyvinyl pyrrolidone )於硝酸銀溶液中,藉由高分子添加劑PVP來幫助硝酸銀墨水黏度的增加,減少高濃度硝酸銀溶液析出於噴頭並進一步改善噴墨品質。隨著添加量的增加,對導線的成形也有顯著的幫助。除此之外,也藉由表面處理與基板溫度的改變進一步改善導線的成形。所量得銀導線的電阻率為2.71 × 10-5 cm。
本論文的第三部分是利用三乙基胺作為還原劑與保護劑,製備奈米銀粒子。所得的奈米銀粒子粒徑為2.10 ~ 4.65 nm,由XRD、TGA、EDS進行鑑定,確定所得的奈米粒子為銀。使用20 wt%的奈米銀懸浮液經150 ℃的熱處理,可以得到電阻率為8.09 x 10-5 cm的銀薄膜。
本論文的第四部分是利用DP ( 1-Dimethylamino-2-propanol )去製備導電銀墨水,並在PET軟性基板上進行噴墨製程。在溶液的製備上,使用EG ( Ethylene glycol )與EA ( Ethanol )的混合溶液去改善coffee-rings的形成,並以XRD來確認銀在低溫下的轉換效果。利用硝酸銀/DP墨水進行噴墨製程,在100 ℃下進行熱處理,所得到的銀導線電阻率為1.37 × 10-5 cm。
本論文的第五部分是以添加奈米銀線製備硝酸銀/奈米銀線墨水,利用奈米銀線降低硝酸銀所需的添加量,應用於噴墨製程。由於奈米銀線可以增加墨水的黏度,在銀導線的製備上,不僅可以得到所需的細線寬,也由於添加奈米銀線於墨水中,在20 wt%硝酸銀/奈米銀線墨水濃度下,銀導線的電阻率可達7.3 × 10-5 cm。
First, we use a novel approach, ethylene glycol vapor reduction, to fabricate conductive silver tracks directly from silver nitrate solution by inkjet printing. The silver nitrate precursor can be reduced in ethylene glycol vapor to form silver at low temperatures. X-ray diffraction (XRD), thermogravimetric analysis (TGA), and energy dispersive spectrometric (EDS) analysis results indicate that the silver nitrate has been converted to silver completely. Using a high concentration silver nitrate solution, continuous silver conductive lines with a resistivity of 7.314 × 10-5 cm has been produced, which is relatively close to the resistivity of bulk silver.
Second, a high molecular weight organic compound, poly(N-vinyl-2-pyrrolidone) (PVP), was added to silver nitrate to fabricate silver conductive lines and arrays by inkjet printing on flexible Kapton® substrates. With the assistance of PVP, the dimension of conductive lines can be controlled more accurately. In addition, the morphological control and resolution of arrays and lines were further improved by using UV/O3 treatment of substrates and changing the substrate temperature. The silver nitrate/PVP inks can be reduced in ethylene glycol vapor to form silver conductive lines at low temperatures. Using a high concentration of silver nitrate/PVP ink, continuous and smooth silver conductive lines with a resistivity of 2.71 × 10-5 cm have been produced. Their resistivity is close to the resistivity of bulk silver.
Third, silver nanoparticles were synthesized by chemical reduction from silver nitrate using triethylamine as the protecting and reducing agents simultaneously. The average size of the silver nanoparticles was about 2.10 – 4.65 nm, which allowed low-temperature sintering of the metal. X-ray diffraction (XRD), thermogravimetric analysis (TGA), and energy dispersive spectrometric (EDS) analysis results indicate that silver nitrate has been converted to silver nanoparticles completely. Using a 20 wt% silver nanoparticles suspension with thermal treatment at 150 oC, silver films with a resistivity of 8.09 x 10-5 cm have been produced, which is close to the resistivity of bulk silver.
Fourth, 1-Dimethylamino-2-propanol (DP) was added to silver nitrate to fabricate silver conductive lines by ink-jet printing at low sintering temperatures on flexible PET substrates. Using an optimal ratio of a mixed solvent (ethanol and ethylene glycol), the morphology of the pattern surface and the formation of coffee-rings could be controlled. X-ray diffraction (XRD) analysis indicated that the AgNO3/DP inks were converted to silver completely at low temperatures. Using the AgNO3/DP inks, continuous and smooth silver conductive lines with a resistivity of 1.37 + 0.44 × 10-5 cm were fabricated at 100 oC by an ink-jet printing system. This resistivity was close to the resistivity of bulk silver.
Fifth, the silver nanowires (AgNW) were added to silver nitrate of form a binary ink to fabricate silver conductive lines by inkjet printing on a flexible Kapton® substrate. Because the viscosity increased with the increasing silver nanowires, the dimension of conductive lines can be controlled more accurately. In addition, using the 20 wt% of AgNO3/AgNW inks, continuous and smooth silver conductive lines with a resistivity of 7.3 + 0.44 × 10-5 cm have been produced by an ink-jet printing system. This resistivity was close to the resistivity of bulk silver.
參考文獻
1. Tseng, A. A. Small 2005, 1, 924.
2. Gerlach, R.; Utlaut, M. Proceedings of SPIE, Int. Society for Optical Eng. 2001, 4510, 2001, 96.
3. Melngailis, J. Handbook of VLSI Lithography, 2nd ed. (Ed.: J. N. Helbert), Noyes, Park Ridge, NJ, 2001, 791.
4. Tseng, A. A. J. Micromech. Microeng. 2004, 14, R15.
5. Telari, K. A.; Rogers, B. R.; Fang, H.; Shen, L.; Weller, R. A.; Braski, D. N. J. Vac. Sci. Technol. B 2002, 20, 590.
6. Morita, T.; Kometani, R.; Watanabe, K.; Kanda, K.; Haruyama, Y.; Hoshino, T.; Kondo, K.; Kaito, T.; Ichihashi, T.; Fujita, J.; Ishida, M.; Ochiai, Y.; Tajima, T.; Matsui, S. J. Vac. Sci. Technol. B 2003, 21, 2737.
7. Allameha, S. M.; Yao, N.; Soboyejo, W. O. Scripta Mater. 2004, 50, 915.
8. Chou, S. Y.; Krauss, P. R.; Renstrom, P. J. Appl. Phys. Lett. 1995, 67, 3114.
9. Otto, M.; Bender, M.; Hadam, B.; Spangenberg, B.; Kurz, H. Microelectron. Eng. 2000, 53, 233.
10. Otto, M.; Bender, M.; Hadam, B.; Spangenberg, B.; Kurz, H. Microelectron. Eng. 2001, 57-58, 361.
11. Xia, Y.; G. Whitesides, M. Angew. Chem. Int. Ed. 1998, 37, 550.
12. Falconnet, D.; Csucs, G. Biomaterials 2006, 27, 3044.
13. Lin, S. C. Sens. Actuators 2004, B 99, 174.
14. Piner, R.D.; Zhu, J.; Xu, F.; Hong, S.; Mirkin, C. A. Science, 1999, 283, 661.
15. Hong, S.; Zhu, J.; Mirkin, C. A. Science 1999, 286, 523.
16. Hong, S.; Mirkin, C. A. Science 2000, 288, 1808.
17. Durr, M.; Biedermann, A.; Hu, Z.; Hofer, U.; Heinz, T. F. Science 2002, 296, 1838.
18. Calvert, P. Chem. Mater. 2001, 13, 3299.
19. Basaran, O. A. AIChE J. 2002, 48, 1842.
20. de Gans, B. J.; Schubert, U. S. Macromol. Rapid Commun. 2003, 24, 659.
21. Jung, H. C.; Cho, S. H.; Joung, J. W.; Oh, Y. S. J. Electron. Mater. 2007, 36, 9.
22. de Gans, B. J.; Duineveld, P. C.; Schubert, U. S. Adv. Mater. 2004, 16, 203.
23. Yang,Y.; Chang, S. C.; Bharathan, J.; Liu, J. J. Mater. Sci.-Mater. Electron. 2000, 11, 89.
24. Cheng, K.; Yang, M. H.; Chiu, W. W. W.; Huang, C. Y.; Chang, J.; Ying, T. F.; Yang, Y.; Macromol. Rapid Commun. 2005, 26, 247.
25. Bidoki1, S. M.; Lewis, D. M.; Clark, M.; Vakorov, A.; Millner, P. A.; McGorman, D. J. Micromech. Microeng. 2007, 17, 967.
26. Krebs, F. C. Sol. Energy Mater. Sol. Cells 2009, 93, 394.
27. Ahn, B. Y.; Duoss, E. B.; Motala, M. J.; Guo, X.; Park, S. I.; Xiong,Y.; Yoon, J.; Nuzzo, R. G.; Rogers, J. A.; Lewis, J. A. Science 2009, 323, 1590.
28. Arias, A. C.; Daniel, J.; Krusor, B.; Ready, S.; Sholin, V.; Street, R. J. Soc. Inf. Disp. 2007, 15, 485.
29. Kim, D.; Lee, S. H.; Jeong, S.; Moonz, J. Electrochem. Solid State Lett. 2009, 12, 195.
30. Takenobu, T.; Miura1, N.; Lu, S. Y.; Okimoto, Asano1, H., T.; Shiraishi, M.; Iwasa, Y. Appl. Phys. Express 2009, 2, 025005.
31. Gamerith, S.; Klug, A.; Scheiber, H.; Scherf, U.; Moderegger, E.; List, E. J. W. Adv. Funct. Mater. 2007, 17, 3111.
32. Amin, R.; Li, Y.; Rushi, V.; Manos, M. T. IEEE Antennas Propag. Mag. 2009, 51, 13.
33. Gizachew, Y.T.; Escoubas, L.; Simon, J.J.; Pasquinelli, M.; Loiret, J.; Leguen, P.Y.; Jimeno, J.C.; Martin, J.; Apraiz, A.; Aguerre, J.P. Sol. Energy Mater. Sol. Cells 2011, 95, S70.
34. 王鉦源,以化學還原法製備奈米級銀鈀微粉,國立成功大學化學工程學系碩士論文, 2002.
35. Hsu, S.L.C.; Wu, R.T. Mater. Lett. 2007, 61, 3719.
36. Grijalva, A. S.; Urbina, R. H.; Silva, J. F. R.; Borja, M. A.; Barraza, F. F. C.; Amarillas, A. P. Mater. Res. Bull. 2008, 43, 90.
37. Wang, H.; Qiao, X.; Chen, J.; Ding, S. Colloid Surf. A-Physicochem. Eng. Asp. 2005, 256, 111.
38. Tsuji, M.; Jiang, P.; Hikino, S.; Lim, S.; Yano, R.; Jang, S. M.; Yoon, S. H.; Ishigami, N.; Tang, X.; Kamarudin, K. S. N. Colloid Surf. A-Physicochem. Eng. Asp. 2008, 317, 23.
39. Wang, X.; Zhang, S.; Zhang, Z. Mater. Chem. Phys. 2008, 107, 9.
40. Wang, A.; Yin, H.; Ren, M.; Liu, Y.; Jiang, T. Appl. Surf. Sci. 2008, 254, 6527.
41. Jiang, C.; Cardin, D. J.; Tsang, S. C. Chem. Mater. 2008, 20, 14.
42. Wu, R.T.; Hsu, S.L.C. Mater. Res. Bull. 2008, 43, 1276.
43. He, S.; Yao, J.; Jiang, P.; Shi, D.; Zhang, H.; Xie, S.; Pang, S.; Gao*, H. Langmuir 2001, 17, 1571.
44. Tan, Y.; Wang, Y.; Jiang, L.; Zhu, D. J. Colloid Interface Sci. 2002, 249, 336.
45. Lee, K. J.; Lee, Y. I.; Shim, I. K.; Joung, J.; Oh Y. S. J. Colloid Interface Sci. 2006, 304 92.
46. Suganuma, K.; Wakuda, D.; Hatamura, M.; Nogi, M. IEEE Nanotechnology Magazine 2010, 4, 20.
47. Wang, W.; Efrima, S.; Regev, O. Langmuir 1998, 14, 602.
48. Lin, Z.; Teng, X.; Yang, H. Langmuir 2003, 19, 10081.
49. Stoeva, S.; Klabunde, K. J.; Sorensen, C. M.; Dragieva, I. J. Am. Chem. Soc. 2002, 124, 2305.
50. Shim, I. K.; Lee, Y. I.; Lee, K. J.; Joung, J. Mater. Chem. Phys. 2008, 110 316.
51. Yamamoto, M.; Kashiwagi, Y.; Nakamoto M. Langmuir 2006, 22, 8581.
52. Chen, M.; Wang, L. Y.; Han, J. T.; Zhang, J. Y.; Li, Z. Y.; Qian, D.J. J. Phys. Chem. B 2006, 110, 11224.
53. Ho, C. H.; Tobis, J.; Sprich, P.; Thomann, R.; Tiller, J. C. Adv. Mater. 2004, 16, 957.
54. Kuo, P. L.; Chen, W. F. J. Phys. Chem. B 2003, 107, 11267.
55. Leff, D. V.; Brandt, L.; Heath, J. R. Langmuir 1996, 12, 4723.
56. Jana, N. R.; Peng, X. J. Am. Chem. Soc. 2003, 125, 14280.
57. Hiramatsu, H.; Osterloh, F. E. Chem. Mater. 2004, 16, 2509.
58. Chen, F.; Zhong, Z.; Xu,X. J.; Luo, J. J. Mater. Sci. 2005, 40, 1517.
59. 單子睿,壓電式噴墨系統之液滴型態控制研究及其數值的模擬,國立成功大學材料科學與工程學系所碩士論文, 2002.
60. 蔡銘修,壓電噴墨系統之液滴行為及噴墨品質研究,國立成功大學材料科學與工程學系所博士論文, 2010.
61. 林建樺,擠壓管式壓電制動噴墨頭之微液滴噴射型為動力分析研究,航空太空工程學系碩士論文, 2005.
62. Perelaer, J.; Hendriks, C. E.; de Laat, A. W. M.; Schubert, U. S. Nanotechnology 2009, 20, 165303.
63. Wu, Y.; Li, Y.; Ong, B. S. J. Am. Chem. Soc. 2007, 129, 1862.
64. Lu, C. A.; Lin, Pang; Lin, H. C.; Wang, S. F. Jpn. J. Appl. Phys. 2007, 46, 251.
65. Valeton, J. J. P.; Hermans, K.; Bastiaansen, C. W. M.; Broer, D. J.; Perelaer, J.; Schubert, U. S.; Crawforde, G. P.; Smith, P. J. J. Mater. Chem. 2010, 20, 543.
66. Jahn, S. F.; Blaudeck, T.; Baumann, R. R. Chem. Mater. 2010, 22, 3067.
67. Perelaer, J.; de Gans, B. J.; Schubert, U. S. Adv. Mater. 2006, 18, 2101.
68. Reinhold, I.; Hendriks, C. E.; Eckardt, R.; Kranenburg, J. M.; Perelaer, J.; Baumann, R. R.; Schubert, U. S. J. Mater. Chem. 2009, 19, 3384.
69. Yung, K. C.; Wu, S. P.; Liem, H. J. Mater. Sci. 2009, 44, 154.
70. Wu, J. T.; Hsu, S. L. C.; Tsai, M. H.; Hwang, W. S. Thin Solid Films 2009, 517, 5913.
71. Gao, Y.; Jiang, P.; Song, L.; Liu, L.; Yan, X.; Zhou, Z.; Liu, D.; Wang, J.; Yuan, H.; Zhang, Z.; Zhao X.; Dou, X.; Zhou, W.; Wang, G.; Xie S. J. Phys. D: Appl. Phys. 2005, 38, 1061.
72. Tsuji, M.; Nishizawa, Y.; Matsumoto, K.; Miyamae, N.; Tsuji, T.; Zhang, X. Colloid Surf. A-Physicochem. Eng. Asp. 2007, 293, 185.
73. Tsuji, M.; Matsumoto, K.; Jiang, P.; Matsuo, R.; Tang, X. L.; Kamarudin, K. S. N. Colloid Surf. A-Physicochem. Eng. Asp. 2008, 316, 266.
74. Sun, Y.; Gates, B.; Mayers, B.; Xia, Y. Nano Lett. 2002, 2, 165.
75. Wang, Z.; Liu, J.; Chen, X.; Wan, J.; Qian, Y. Chem. Eur. J. 2005, 11, 160.
76. Gou, L.; Chipara, M.; Zaleski, J. M. Chem. Mater. 2007, 19, 1755.
77. Ni, K.; Chen, L.; Lu, G. Electrochem. Commun. 2008, 10, 1027.
78. Tang, X. ; Tsuji, M. ; Jiang, P. ; Nishio, M. ; Jang, S. M. ; Yoon, S. H. Colloid Surf. A-Physicochem. Eng. Asp. 2009, 338 33.
79. Sun, Y. ; Xia, Y. Adv. Mater. 2002, 14, 833.
80. Chen, C.; Wang, L.; Jiang, G.; Yang, Q.; Wang, J.; Yu, H.; Chen, T.; Wang, C.; Chen, X. Nanotechnology 2006, 17, 466.
81. Jiang, P.; Li, S. Y.; Xie, S. S.; Gao, Y.; Song, L. Chem. Eur. J. 2004, 10, 4817.
82. Wei, Q.; Li, B.; Li, C.; Wang, J.; Wang, W.; Yang , X. J. Mater. Chem. 2006, 16, 3606.
83. Lu, Y. C.; Chou, K. S.; Nogami, M. Mater. Chem. Phys. 2009, 116, 1.
84. Chen, C.; Wang, L.; Yu, H.; Jiang, G.; Yang, Q.; Zhou, J.; Xiang, W.; Zhang, J. Mater. Chem. Phys. 2008, 107, 13.
85. Tung, H. T.; Chen, I. G.; Song, J. M.; Yen, C. W. J. Mater. Chem. 2009, 19, 2386.
86. Tung, H. T.; Song, J. M.; Nien, Y. T.; Chen, I. G. Nanotechnology 2008, 19, 455603.
87. Chen, T. K.; Chen, W. T.; Yang, M. C.; Wong, M. S. J. Vac. Sci. Technol. B 2005, 23, 2261.
88. Tsai, M. H.; Hwang, W. S. Mater. Trans. 2008, 49, 331.
89. Kim, D.; Jeong, S.; Park, B. K.; Moon, J. Appl. Phys. Lett. 2006, 89, 264101.
90. Lee, D. J.; Oh, J. H.; Bae, H. S. Mater. Lett. 2010, 64, 1069.
91. Van den Berg, A. M. J.; de Laat, A. W. M.; Smith, P. J.; Perelaer, J.; Schubert, U. S. J. Mater. Chem. 2007, 17, 677.
92. Kim, D.; Jeong, S.; Moon, J. Mol. Cryst. Liquid Cryst. 2006, 459, 45.
93. Lee, S. H.; Shin, K. Y.; Hwang, J. Y.; Kang, K. T.; Kang, H. S. J. Micromech. Microeng. 2008, 18, 075014.
94. Soltman, D.; Subramanian, V. Langmuir 2008, 24, 2224.
95. Stringer J.; Derby, B. Langmuir 2010, 26, 10365.
96. Chen, F.; Zhong, Z.; Xu, X. J.; Luo, J. J. Mater. Sci. 2005, 40, 1517.
97. Frattini, A.; Pellegri, N.; Nicastro, D.; de Sanctis, O. Mater. Chem. Phys. 2005, 94, 148.
98. Doggart, J.; Wu, Y.; Zhu, S. Appl. Phys. Lett. 2009, 94, 163503.
99. Kim, D.; Jeong, S.; Lee, S. H.; Moon, J.; Song. J. K. Synth. Met. 2009, 159, 1381.
100. Lim, J. A.; Lee, W. H.; Lee, H. S.; Lee, J. H.; Park, Y. D.; Cho, K. Adv. Funct. Mater. 2008, 18, 229.
101. Sun, Y.; Xia, Y. Science 2002, 298, 2176.
102. Smith, P. J.; Shin, D. Y.; Stringer, J. E.; Derby, B. J. Mater. Sci. 2006, 41, 4153.
103. Stringer, J.; Derby, B. J. Eur. Ceram. Soc. 2009, 29, 913.
104. Gizachew, Y.T.; Escoubas, L.; Simon, J.J.; Pasquinelli, M.; Loiret, J.; Leguen, P.Y.; Jimeno, J.C.; Martin, J.; Apraiz, A.; Aguerre, J.P. Sol. Energy Mater. Sol. Cells 2011, 95, S70.
105. Kandlikar, S. G.; Steinke, M. E. Int. J. Heat Mass Transf. 2002, 45 3771.
106. Chen, C.; Wang, L.; Li, R.; Jiang, G.; Yu, H.; Chen, T. J. Mater. Sci. 2007, 42, 3172.
107. Chen, D.; Qiao, X.; Qiu, X.; Tan, F.; Chen, J.; Jiang, R. J. Mater. Sci.-Mater. Electron. 2010, 21, 486.
校內:2022-01-01公開