| 研究生: |
蔡瑋展 Tsai, Wei-Chan |
|---|---|
| 論文名稱: |
使用連續時間光電子譜及光子激發脫附譜探討分子吸附在矽單晶Si(111)-7x7表面的光解作用之基礎研究 Basic studies on the photolysis of molecules adsorbed on Si(111)-7x7 surface using continuous-time photoelectron spectroscopy and photon-stimulated desorption spectroscopy |
| 指導教授: |
溫清榕
Wen, Ching-Rong |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 光電子譜 、光子激發脫附譜 、光解作用 |
| 外文關鍵詞: | PSD, PES, photolysis |
| 相關次數: | 點閱:43 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們用三種新發展的表面分析技術來研究分子吸附在矽單晶Si(111)-7x7表面上的光解過程。連續時間光電子譜技術(continuous-time photoelectron spectroscopy)和隨光子曝露量變化之光子激發脫附譜技術(photon-exposure-dependent photon-stimulated- desorption spectroscopy)被用來研究吸附在30 K的Si(111)-7x7表面上的SF6分子經單色軟x光照射所引起的反應;而連續時間光子激發脫附譜技術(continuous-time photon-stimulated-desorption spectroscopy)被用來研究吸附在相同表面的CF3Br分子之光解離。單色同步輻射光被當做引起光反應的軟x光光源,同時也是被用做探測表面生成物的探針。我們藉由[在Si(2p)吸收邊緣的]98及120 eV光子來監視吸附的SF6分子在光子照射下所引發的變化。並由一系列的價帶光電子譜來獲得光解離截面與入射光子能量的關係。另一方面,從低CF3Br分子覆蓋量的表面得到之一系列光子激發脫附譜圖顯示表面SiF的生成。另在高CF3Br分子覆蓋量的表面得到之一系列譜圖則指出表面SiF、SiF2和SiF3的生成。至於吸附分子的光解離機制也在本文中討論
Three new developed surface analytic techniques were used to study the photolysis of molecules adsorbed on the Si(111)-7x7 surface. The continuous-time photoelectron spectroscopy (PES) and photon-exposure-dependent photon-stimulated desorption (PSD) were employed to investigate the monochromatic soft x-ray-induced reaction of SF6 molecules adsorbed on Si(111)-7x7 at 30 K; and the continuous-time core-level photon-stimulated desorption spectroscopy was used to study the photolysis of CF3Br molecules adsorbed on the same surface. The monochromatic synchrotron radiation was employed as a soft x-ray light source in the photon-induced reactions and also as a probe for investigating the produced surface species. The photon-induced evolution of adsorbed SF6 was monitored at photon energies of 98 and 120 eV [near the Si(2p) edge], and sequential valence-level PES spectra made it possible to deduce the photolysis cross section as a function of energy. On the other hand, the sequential PSD spectra from the low-CF3Br-covered surfaces show the production of surface SiF species, while those from the high-CF3Br-covered surfaces depict the formation of surface SiF, SiF2, and SiF3 species. The mechanisms responsible for the photolysis of the adsorbed molecules were discussed.
Chapter 1
[1] T. Urisu, A. Yoshigoe, and Y. Imaizumi, Optoelectron., Devices Technol. 11, 57 (1996).
[2] T. Urisu, T. Ibuki, Y. Imaizumi, and M. Kawasaki, Nucl. Instrum. and Methods in Phys. Research B 122, 364 (1997).
[3] Y. Iba, Y. Sugita, and Y. Nara, J. Vac. Sci. Technol. A 15, 2561 (1997).
[4] H. Kyuragi and T. Urisu, J. Appl. Phys. 61, 2035 (1987).
[5] H. Kyuragi and T. Urisu, Appl. Phys. Lett. 50, 1254 (1987).
[6] T. Urisu and H. Kyuragi, J. Vac. Sci. Technol. B 5, 1436 (1987).
[7] R. A. Rosenberg, F. K. Perkins, D. C. Mancini, G. R. Harp, B. P. Tonner, S. Lee, and P. A. Dowben, Appl. Phys. Lett. 58, 607 (1991).
[8] F. K. Perkins, R. A. Rosenberg, S. Lee, and P. A. Dowben, J. Appl. Phys. 69, 4103 (1991).
[9] K. Shobatake, H. Ohashi, K. Fukui, A. Hiraya, N. Hayasaka, H. Okano, A. Yoshida, and H. Kume, Appl. Phys. Lett. 56, 2189 (1990).
[10] S. Terakado, J. Nishino, M. Morigami, M. Harada, S. Suzuki, K. Tanaka, and J. Chikawa, Jpn. J. Appl. Phys., Part 2 29, L709 (1990).
[11] Y. Utsumi, J. Takahashi, and T. Urisu, J. Vac. Sci. Technol. B 9, 2507 (1991).
[12] S. Terakado, O. Kitamura, S. Suzuki, and K. Tanaka, J. Vac. Sci. Technol. B 11, 1890 (1993).
[13] B. Li, I. Twesten, and N. Schwentner, Appl. Phys. A: Solids Surf. 57, 457 (1993).
[14] B. Li, I. Twesten, H. P. Krause, and N. Schwentner, Appl. Phys. Lett. 64, 1635 (1994).
[15] H. Ohashi, A. Yoshida, K. Tabayashi, and K. Shobatake, Appl. Surf. Sci. 69, 20 (1993).
[16] D. Menzel and R. Gomer, J. Chem. Phys. 41, 3311 (1964).
[17] P. A. Redhead, Can. J. Phys. 42, 886 (1964).
[18] M. L. Knotek and P. J. Feibelman, Phys. Rev. Lett. 40, 964 (1978).
[19] M. L. Knotek, Rep. Prog. Phys. 47, 1499 (1984).
[20] T. E. Madey, D. E. Ramaker, and R. Stockbauer, Annu. Rev. Phys. Chem. 35, 215 (1984).
[21] C. E. Bartosch, N. S. Gluck, W. Ho, and Z. Ying, Phys. Rev. Lett. 57, 1425 (1986).
[22] R. Locht and J. Momigny, Intern. J. Mass Spectrom. Ion Phys. 7, 121 (1971).
[23] L.-C. Chou, W.-M. Chuang, W.-C. Tsai, S.-K. Wang, Y.-H. Wu, and C.-R. Wen, Appl. Phys. Lett. 91, 144103 (2007).
[24] L.-C. Chou and C.-R. Wen, Phys. Rev. B 73, 195407 (2006).
Chapter 2
[1] H. Kyuragi and T. Urisu, J. Appl. Phys. 61, 2035 (1987).
[2] H. Kyuragi and T. Urisu, Appl. Phys. Lett. 50, 1254 (1987).
[3] T. Urisu and H. Kyuragi, J. Vac. Sci. Technol. B 5, 1436 (1987).
[4] T. Urisu, A. Yoshigoe, and Y. Imaizumi, Optoelectron., Devices Technol. 11, 57 (1996).
[5] T. Urisu, T. Ibuki, Y. Imaizumi, and M. Kawasaki, Nucl. Instrum. Meth. Phys. Res. B 122, 364 (1997).
[6] Y. Iba, Y. Sugita, and Y. Nara, J. Vac. Sci. Technol. A 15, 2561 (1997).
[7] R. A. Rosenberg, F. K. Perkins, D. C. Mancini, G. R. Harp, B. P. Tonner, S. Lee, and P. A. Dowben, Appl. Phys. Lett. 58, 607 (1991).
[8] F. K. Perkins, R. A. Rosenberg, S. Lee, and P. A. Dowben, J. Appl. Phys. 69, 4103 (1991).
[9] K. Shobatake, H. Ohashi, K. Fukui, A. Hiraya, N. Hayasaka, H. Okano, A. Yoshida, and H. Kume, Appl. Phys. Lett. 56, 2189 (1990).
[10] S. Terakado, J. Nishino, M. Morigami, M. Harada, S. Suzuki, K. Tanaka, and J. Chikawa, Jpn. J. Appl. Phys. Part 2 29, L709 (1990).
[11] Y. Utsumi, J. Takahashi, and T. Urisu, J. Vac. Sci. Technol. B 9, 2507 (1991).
[12] S. Terakado, O. Kitamura, S. Suzuki, and K. Tanaka, J. Vac. Sci. Technol. B 11, 1890 (1993).
[13] B. Li, I. Twesten, and N. Schwentner, Appl. Phys. A 57, 457 (1993).
[14] B. Li, I. Twesten, H. P. Krause, and N. Schwentner, Appl. Phys. Lett. 64, 1635 (1994).
[15] R. A. Rosenberg, S. P. Frigo, and J. K. Simons, Appl. Surf. Sci. 79/80, 47 (1994).
[16] C.-R. Wen and R. A. Rosenberg, Surf. Sci. Lett. 218, L483 (1989).
[17] S. P. Frigo, J. K. Simons, and R. A. Rosenberg, J. Chem. Phys. 103, 10356 (1995).
[18] S. P. Frigo, J. K. Simons, and R. A. Rosenberg, J. Chem. Phys. 103, 10366 (1995).
[19] L.-C. Chou, W.-M. Chuang, W.-C. Tsai, S.-K. Wang, Y.-H. Wu, and C.-R. Wen, Appl. Phys. Lett. 91, 144103 (2007).
[20] J. K. Simons, S. P. Frigo, J. W. Taylor, and R. A. Rosenberg, Surf. Sci. 346, 21 (1996).
[21] C.-R. Wen and L.-C. Chou, J. Chem. Phys. 112, 9068 (2000).
[22] C.-R. Wen and L.-C. Chou, J. Chem. Phys. 120, 11144 (2004).
[23] L.-C. Chou and C.-R. Wen, Phys. Rev. B 73, 195407 (2006).
[24] C.-R. Wen, C.-Y. Jang, L.-C. Chou, J. Chen, Y.-H. Wu, S.-C. Chang, W.-C. Tsai, C.-C. Liu, S.-K. Wang, and Y. Shai, J. Chem. Phys. 127, 114704 (2007).
[25] L.-C. Chou, C.-Y. Jang, Y.-H. Wu, W.-C. Tsai, S.-K. Wang, J. Chen, S.-C. Chang, C.-C. Liu, Y. Shai, and C.-R. Wen, J. Chem. Phys. 129, 214104 (2008).
[26] W. R. Runyan and K. E. Bean, Semiconductor Integrated Circuit Processing Technology (Addison-Wesley, 1990).
[27] A. J. van Roosmalen, J. A. G. Baggerman, and S. J. H. Brader, Dry Etching for VLSI (Plenum Press, New York, 1991).
[28] C. P. D'Emic, K. K. Chan, and J. Blum, J. Vac. Sci. Technol. B 10, 1105 (1992).
[29] J. W. Bartha, J. Greschner, M. Puech, and P. Maquin, Microelectron. Eng. 27, 453 (1995).
[30] A. Burtsev, Y. X. Li, H. W. Zeijl, and C. I. M. Beenakker, Microelectron. Eng. 40, 85 (1998).
[31] M. Boufnichel, S. Aachboun, F. Grangeon, P. Lefaucheux, and P. Ranson, J. Vac. Sci. Technol. B 20, 1508 (2002).
[32] A. P. Hitchcock and M. J. Van der Wiel, J. Phys. B 12, 2153 (1979).
[33] T. Masuoka and J. A. R. Samson, J. Chem. Phys. 75, 4946 (1981).
[34] J.-H. Fock and E. E. Koch, Chem. Phys. 96, 125 (1985).
[35] L. J. Frasinski, M. Stankiewicz, K. J. Randall, P. A. Hatherly, and K. Codling, J. Phys. B 19, L819 (1986).
[36] M. Fenzlaff, R. Gerhard, and E. Illenberger, J. Chem. Phys. 88, 149 (1988).
[37] D. M. P. Holland, M. A. MacDonald, P. Baltzer, L. Karlsson, M. Lundqvist, B. Wannberg, and W. von Niessen, Chem. Phys. 192, 333 (1995).
[38] L. G. Christophorou and J. K. Olthoff, J. Phys. Chem. Ref. Data 29, 267 (2000).
[39] L.-C. Chou, C.-R. Wen, and J. Chen, Chin. J. Phys. (Taipei) 38, 987 (2000).
[40] J. Chen, Master thesis, National Cheng Kung University, Taiwan, 2000.
[41] A. Klekamp and E. Umbach, J. Phys.: Condens. Matter 5, L67 (1993).
[42] F. Weik and E. Illenberger, J. Chem. Phys. 109, 6079 (1998).
[43] K. Mitsuke, S. Suzuki, T. Imamura, and I. Koyano, J. Chem. Phys. 93, 8717 (1990).
[44] M. V. V. S. Rao and S. K. Srivastava, Proceedings of the XVIIIth International Conference on the Physics of Electronic and Atomic Collisions, Aarhus, Denmark, July 21-27, 1993.
[45] J. A. Yarmoff, A. Taleb-Ibrahimi, F. R. McFeely, and Ph. Avouris, Phys. Rev. Lett. 60, 960 (1988).
[46] J. A. Yarmoff and S. A. Joyce, J. Vac. Sci. Technol. A 7, 2445 (1989).
[47] J. A. Yarmoff and S. A. Joyce, Phys. Rev. B 40, 3143 (1989).
Chapter 3
[1] H. Kyuragi and T. Urisu, J. Appl. Phys. 61, 2035 (1987).
[2] H. Kyuragi and T. Urisu, Appl. Phys. Lett. 50, 1254 (1987).
[3] T. Urisu and H. Kyuragi, J. Vac. Sci. Technol. B 5, 1436 (1987).
[4] T. Urisu, A. Yoshigoe, and Y. Imaizumi, Optoelectron., Devices Technol. 11, 57 (1996).
[5] T. Urisu, T. Ibuki, Y. Imaizumi, and M. Kawasaki, Nucl. Instrum. and Methods in Phys. Research B 122, 364 (1997).
[6] Y. Iba, Y. Sugita, and Y. Nara, J. Vac. Sci. Technol. A 15, 2561 (1997).
[7] R. A. Rosenberg, F. K. Perkins, D. C. Mancini, G. R. Harp, B. P. Tonner, S. Lee, and P. A. Dowben, Appl. Phys. Lett. 58, 607 (1991).
[8] F. K. Perkins, R. A. Rosenberg, S. Lee, and P. A. Dowben, J. Appl. Phys. 69, 4103 (1991).
[9] K. Shobatake, H. Ohashi, K. Fukui, A. Hiraya, N. Hayasaka, H. Okano, A. Yoshida, and H. Kume, Appl. Phys. Lett. 56, 2189 (1990).
[10] S. Terakado, J. Nishino, M. Morigami, M. Harada, S. Suzuki, K. Tanaka, and J. Chikawa, Jpn. J. Appl. Phys., Part 2 29, L709 (1990).
[11] Y. Utsumi, J. Takahashi, and T. Urisu, J. Vac. Sci. Technol. B 9, 2507 (1991).
[12] S. Terakado, O. Kitamura, S. Suzuki, and K. Tanaka, J. Vac. Sci. Technol. B 11, 1890 (1993).
[13] B. Li, I. Twesten, and N. Schwentner, Appl. Phys. A 57, 457 (1993).
[14] B. Li, I. Twesten, H. P. Krause, and N. Schwentner, Appl. Phys. Lett. 64, 1635 (1994).
[15] C.-R. Wen and R. A. Rosenberg, Surf. Sci. Lett. 218, L483 (1989).
[16] R. A. Rosenberg, S. P. Frigo, and J. K. Simons, Appl. Surf. Sci. 79/80, 47 (1994).
[17] S. P. Frigo, J. K. Simons, and R. A. Rosenberg, J. Chem. Phys. 103, 10356 (1995).
[18] S. P. Frigo, J. K. Simons, and R. A. Rosenberg, J. Chem. Phys. 103, 10366 (1995).
[19] J. K. Simons, S. P. Frigo, J. W. Taylor, and R. A. Rosenberg, Surf. Sci. 346, 21 (1996).
[20] C.-R. Wen and L.-C. Chou, J. Chem. Phys. 112, 9068 (2000).
[21] C.-R. Wen and L.-C. Chou, J. Chem. Phys. 120, 11144 (2004).
[22] L.-C. Chou and C.-R. Wen, Phys. Rev. B 73, 195407 (2006).
[23] C.-R. Wen, C.-Y. Jang, L.-C. Chou, J. Chen, Y.-H. Wu, S.-C. Chang, W.-C. Tsai, C.-C. Liu, S.-K. Wang, and Y. Shai, J. Chem. Phys. 127, 114704 (2007).
[24] L.-C. Chou, W.-M. Chuang, W.-C. Tsai, S.-K. Wang, Y.-H. Wu, and C.-R. Wen, Appl. Phys. Lett. 91, 144103 (2007).
[25] L.-C. Chou, C.-Y. Jang, Y.-H. Wu, W.-C. Tsai, S.-K. Wang, J. Chen, S.-C. Chang, C.-C. Liu, Y. Shai, and C.-R. Wen, J. Chem. Phys. 129, 214104 (2008).
[26] W.-C. Tsai, S.-K. Wang, L.-C. Chou, J. Chen, Y.-H. Wu, H.-C. Chen, and C.-R. Wen, Surf. Sci. 604, 1494 (2010).
[27] L.-C. Chou, C.-R. Wen, and J. Chen, Chin. J. Phys. (Taipei) 38, 987 (2000).
[28] Y.-C. Hsieh, Master thesis, National Cheng Kung University, Taiwan, 2004.
[29] I. Novak and J. M. Benson, Chem. Phys. 104, 153 (1986).
[30] T. Underwood-Lemons, T. J. Gergel, and J. H. Moore, J. Chem. Phys. 102, 119 (1995).
[31] M. J. Simpson, R. P. Tuckett, K. F. Dunn, C. A. Hunniford, and C. J. Latimer, J. Chem. Phys. 130, 194302 (2009).
[32] D. E. Ramaker, Desorption Induced by Electronic Transitions, edited by N. H. Tolk, M. M. Traum, J. C. Tully, and T. E. Madey (Springer-Verlag, Heidelberg, Berlin, 1983).
[33] M. L. Knotek, Rep. Prog. Phys. 47, 1499 (1984).
[34] T. E. Madey, D. E. Ramaker, and R. Stockbauer, Annu. Rev. Phys. Chem. 35, 215 (1984).
[35] J. A. Yarmoff, A. Taleb-Ibrahimi, F. R. McFeely, and Ph. Avouris, Phys. Rev. Lett. 60, 960 (1988).
[36] J. A. Yarmoff and S. A. Joyce, J. Vac. Sci. Technol. A 7, 2445 (1989).
[37] J. A. Yarmoff and S. A. Joyce, Phys. Rev. B 40, 3143 (1989).
[38] C.-R. Wen, S. P. Frigo, and R. A. Rosenberg, Surf. Sci. 249, 117 (1991).
[39] F. R. McFeely, J. F. Morar, N. D. Shinn, G. Landgren and F. J. Himpsel, Phys. Rev. B 30, 764 (1984).
[40] Y. Miyamoto and A. Oshiyama, Phys. Rev. B 44, 5931 (1991).
[41] H. Friedrich, B. Pittel, P. Rabe, W. H. E. Schwarz, and B. Sonntag, J. Phys. B 13, 25 (1980).
[42] G. M. Bancroft, S. Aksela, H. Aksela, K. H. Tan, B. W. Yates, L. L. Coatsworth and J. S. Tse, J. Chem. Phys. 84, 5 (1986).
[43] R. A. Rosenberg, J. Vac. Sci. Technol. A 4, 1463 (1986).
[44] T. D. Durbin, W. C. Simpson, V. Chakarian, D. K. Shuh, P. R. Varekamp, C. W. Lo, and J. A. Yarmoff, Surf. Sci. 316, 257 (1994).
[45] J. W. Bozzelli, C. E. Kolb, and M. Kaufman, J. Chem. Phys. 59, 3669 (1973).
[46] T. Clark, M. Hennemann, J. S. Murray, and P. Politzer, J. Mol. Mod. 13, 291 (2007).
[47] A. E. Reed, L. A. Curtiss, and F. Weinhold, Chem. Rev. 88, 899 (1988).
[48] Handbook of Chemistry and Physics, 87th ed., edited by D. R. Lide (CRC, Boca Raton, FL, 2006).