| 研究生: |
劉聖恩 LIOU, SHENG-EN |
|---|---|
| 論文名稱: |
2013-2016年臺灣地區細懸浮微粒之水溶性離子組成 Water-soluble ionic compositions of PM2.5 in Taiwan during 2013-2016 |
| 指導教授: |
吳義林
Wu, Yee-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 170 |
| 中文關鍵詞: | 細懸浮微粒 、水溶性離子 、天氣型態 |
| 外文關鍵詞: | PM2.5, Water-soluble ionic species, synoptic weather type |
| 相關次數: | 點閱:51 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究分析環保署手動採樣2013年至2016年之樣品,以探討歷年各空品區PM2.5及其化學組成的差異,以及高濃度與低濃度事件日期間,細懸浮微粒濃度及其水溶性離子成份濃度與前驅氣體濃度及氣象因子之關聯性。
四年全臺監測站皆以SO42- (19~38 %)占比例最高,其次為NH4+ (9~18%)與NO3- (4~20 %);天氣型態以東北季風型、高壓出海型、高壓迴流型、鋒前暖區型、臺灣近海鋒面型於4年中有最多案例,鋒前暖區型在北部(30~33 %)、竹苗(21~46 %)、中部(29~57 %)空品區事件日占比最高,高壓出海型在雲嘉南(60~78 %)、高屏(44~56 %)空品區占比最高。4年PM2.5組成成分比較結果,全臺多數測站Na+、NH4+、Mg2+、Ca2+、Cl-、nss-SO42-皆有顯著差異;K+全臺測站在4年間皆有顯著差異;NO2-、NO3-則在多數測站無顯著差異。
現址生成衍生性氣膠估算結果,北部空品區I > 2,J > 1占所有案例40 %為最多,中部空品區I < 2占48 %,雲嘉南空品區I > 2,J > 1占所有案例61 %,高屏空品區以I < 2占50 %。
境外傳輸貢獻方面,全臺PM2.5平均濃度北風案例(27±11 μg/m3)較南風案例(13±5 μg/m3)高。北風案例中,全臺境外傳輸PM2.5平均貢獻比例為46~58 %;NH4+為44~57 %; NO3-為23~35 %; nss-SO42-為48~62 %。南風案例中,全臺PM2.5平均貢獻比例為44~57 %;NH4+為32~65 %; NO3-為52~83 %;nss-SO42-為28~64 %。
Fine particle (aerodynamic diameter <2.5 mm), have been found to be associated with ambient air quality problems in urban areas including health problems. Particle samples were collected at ambient air quality monitoring stations, using a PQ 200 PM2.5 sampler from 2013. Ion chromatography was used to analyze the concentrations for water-soluble ionic species. During 2013~2016, the results show that the major species are sulfate, ammonium, and nitrate. The fractions of sulfate are the greatest among all analyzed species and are 19~38%; those of ammonium and nitrate are 9~18% and 4~20%, respectively. The synoptic weather types A2 showed the high probability of occurring high concentrations of PM2.5 in North (30~33%) and Chu-Miao (21~46%) and Central (29~57%). The synoptic weather types A11 showed the high probability of occurring high concentrations of PM2.5 in Yun-Chia-Nan (60~78%) and Kao-Ping (44~56%). Compared with the results of the composition of PM2.5 for 4 years, Na+, NH4+, Mg2+, Ca2+, Cl-, nss-SO42- were significantly different in most stations. K+ were significantly different in all stations.NO2- and NO3- is not significantly different at most stations.
Aldape, F., FLORBS M, J., Diaz, R. V., Miranda, J., Cahill, T. A., & Morales, J. R. (1991). Two year study of elemental composition of atmospheric aerosols in Mexico City. International Journal of pixe, 1(04), 373-388.
Bikkina, S., Kawamura, K., Miyazaki, Y., & Fu, P. (2014). High abundances of oxalic, azelaic, and glyoxylic acids and methylglyoxal in the open ocean with high biological activity: Implication for secondary OA formation from isoprene. Geophysical Research Letters, 41(10), 3649-3657.
Cao, J. J., Wu, F., Chow, J. C., Lee, S. C., Li, Y., Chen, S. W., ... & Liu, S. X. (2005). Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in Xi'an, China. Atmospheric Chemistry and Physics, 5(11), 3127-3137.
Chen, D., Liu, Z., Fast, J., & Ban, J. (2016). Simulations of sulfate–nitrate–ammonium (SNA) aerosols during the extreme haze events over northern China in October 2014. Atmospheric Chemistry and Physics, 16(16), 10707-10724.
Chen, W. C., Wang, C. S., & Wei, C. C. (1997). An assessment of source contributions to ambient aerosols in Central Taiwan. Journal of the Air & Waste Management Association, 47(4), 501-509.
Chen, Y., Xie, S. D., Luo, B., & Zhai, C. Z. (2017). Particulate pollution in urban Chongqing of southwest China: Historical trends of variation, chemical characteristics and source apportionment. Science of The Total Environment, 584, 523-534.
Chou, C. K., Lee, C. T., Cheng, M. T., Yuan, C. S., Chen, S. J., Wu, Y. L., ... & Liu, S. C. (2010). Seasonal variation and spatial distribution of carbonaceous aerosols in Taiwan. Atmospheric Chemistry and Physics, 10(19), 9563-9578.
Chow, J. C., Watson, J. G., Edgerton, S. A., & Vega, E. (2002). Chemical composition of PM2.5 and PM10 in Mexico City during winter 1997. Science of the Total Environment, 287(3), 177-201.
Chow, J. C., Watson, J. G., Fujita, E. M., Lu, Z., Lawson, D. R., & Ashbaugh, L. L. (1994). Temporal and spatial variations of PM2. 5 and PM10 aerosol in the Southern California air quality study. Atmospheric Environment, 28(12), 2061-2080.
Chu, S. H. (2004). PM2.5 episodes as observed in the speciation trends network. Atmospheric Environment, 38(31), 5237-5246.
Collaud Coen, M., Weingartner, E., Nyeki, S., Cozic, J., Henning, S., Verheggen, B., ... & Baltensperger, U. (2007). Long‐term trend analysis of aerosol variables at the high‐alpine site Jungfraujoch. Journal of Geophysical Research: Atmospheres, 112(D13).
Cruz, C. N., & Pandis, S. N. (1997). A study of the ability of pure secondary organic aerosol to act as cloud condensation nuclei. Atmospheric Environment, 31(15), 2205-2214.
Cruz, C. N., & Pandis, S. N. (1998). The effect of organic coatings on the cloud condensation nuclei activation of inorganic atmospheric aerosol. Journal of Geophysical Research: Atmospheres, 103(D11), 13111-13123.
Gao, X., Yang, L., Cheng, S., Gao, R., Zhou, Y., Xue, L., ... & Xu, P. (2011). Semi-continuous measurement of water-soluble ions in PM2. 5 in Jinan, China: temporal variations and source apportionments. Atmospheric Environment, 45(33), 6048-6056.
Ho, K. F., Cao, J. J., Lee, S. C., Kawamura, K., Zhang, R. J., Chow, J. C., & Watson, J. G. (2007). Dicarboxylic acids, ketocarboxylic acids, and dicarbonyls in the urban atmosphere of China. Journal of Geophysical Research: Atmospheres, 112(D22).
Ho, K. F., Lee, S. C., Cao, J. J., Li, Y. S., Chow, J. C., Watson, J. G., & Fung, K. (2006). Variability of organic and elemental carbon, water soluble organic carbon, and isotopes in Hong Kong. Atmospheric Chemistry and Physics, 6(12), 4569-4576.
Jung, J., Tsatsral, B., Kim, Y. J., & Kawamura, K. (2010). Organic and inorganic aerosol compositions in Ulaanbaatar, Mongolia, during the cold winter of 2007 to 2008: dicarboxylic acids, ketocarboxylic acids, and α‐dicarbonyls. Journal of Geophysical Research: Atmospheres, 115(D22).
Kawamura, K., & Bikkina, S. (2016). A review of dicarboxylic acids and related compounds in atmospheric aerosols: Molecular distributions, sources and transformation. Atmospheric Research, 170, 140-160.
Kawamura, K., & Ikushima, K. (1993). Seasonal changes in the distribution of dicarboxylic acids in the urban atmosphere. Environmental Science & Technology, 27(10), 2227-2235.
Kawamura, K., & Kaplan, I. R. (1987). Motor exhaust emissions as a primary source for dicarboxylic acids in Los Angeles ambient air. Environmental Science & Technology, 21(1), 105-110.
Kawamura, K., & Sakaguchi, F. (1999). Molecular distributions of water soluble dicarboxylic acids in marine aerosols over the Pacific Ocean including tropics. Journal of Geophysical Research: Atmospheres, 104(D3), 3501-3509.
Kawamura, K., & Sakaguchi, F. (1999). Molecular distributions of water soluble dicarboxylic acids in marine aerosols over the Pacific Ocean including tropics. Journal of Geophysical Research: Atmospheres, 104(D3), 3501-3509.
Kawamura, K., Ono, K., Tachibana, E., Charriére, B., & Sempéré, R. (2012). Distributions of low molecular weight dicarboxylic acids, ketoacids and α-dicarbonyls in the marine aerosols collected over the Arctic Ocean during late summer. Biogeosciences, 9(11), 4725-4737.
Kawamura, K., Tachibana, E., Okuzawa, K., Aggarwal, S. G., Kanaya, Y., & Wang, Z. F. (2013). High abundances of water-soluble dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in the mountaintop aerosols over the North China Plain during wheat burning season. Atmospheric chemistry and physics, 13(16), 8285-8302.
Kuo, C. Y., Chen, H. H., Shih, J. F., & Wong, R. H. (2005). Variations of nitrate and sulfate in the atmosphere on days of high and low particulate matters. Environmental Toxicology and Chemistry: An International Journal, 24(4), 846-851.
Kuo, C. Y., Chen, P. T., Lin, Y. C., Lin, C. Y., Chen, H. H., & Shih, J. F. (2008). Factors affecting the concentrations of PM10 in central Taiwan. Chemosphere, 70(7), 1273-1279.
Lai, L. W. (2015). Fine particulate matter events associated with synoptic weather patterns, long-range transport paths and mixing height in the Taipei Basin, Taiwan. Atmospheric Environment, 113, 50-62.
Lee, H. S., & Kang, B. W. (2001). Chemical characteristics of principal PM2. 5 species in Chongju, South Korea. Atmospheric Environment, 35(4), 739-746.
Li, Y., Chen, Q., Zhao, H., Wang, L., & Tao, R. (2015). Variations in PM10, PM2. 5 and PM1. 0 in an urban area of the Sichuan Basin and their relation to meteorological factors. Atmosphere, 6(1), 150-163.
Lin, J. J. (2002). Characterization of the major chemical species in PM2. 5 in the Kaohsiung City, Taiwan. Atmospheric Environment, 36(12), 1911-1920.
Lin, J. J. (2002). Characterization of water-soluble ion species in urban ambient particles. Environment international, 28(1-2), 55-61.
Liu, G., Li, J., Wu, D., & Xu, H. (2015). Chemical composition and source apportionment of the ambient PM2.5 in Hangzhou, China. Particuology, 18, 135-143.
Liu, Y., Zhao, N., Vanos, J. K., & Cao, G. (2017). Effects of synoptic weather on ground-level PM2.5 concentrations in the United States. Atmospheric Environment,148, 297-305.
Mangelson, N. F., Lewis, L., Joseph, J. M., Cui, W., Machir, J., Eatough, D. J., ... & Jensen, D. T. (1997). The contribution of sulfate and nitrate to atmospheric fine particles during winter inversion fogs in Cache Valley, Utah. Journal Of The Air & Waste Management Association, 47(2), 167-175.
Ming, L., Jin, L., Li, J., Fu, P., Yang, W., Liu, D., ... & Li, X. (2017). PM2. 5 in the Yangtze River Delta, China: Chemical compositions, seasonal variations, and regional pollution events. Environmental pollution, 223, 200-212.
Narukawa, M., Kawamura, K., Takeuchi, N., & Nakajima, T. (1999). Distribution of dicarboxylic acids and carbon isotopic compositions in aerosols from 1997 Indonesian forest fires. Geophysical Research Letters, 26(20), 3101-3104.
Narukawa, M., Kawamura, K., Takeuchi, N., & Nakajima, T. (1999). Distribution of dicarboxylic acids and carbon isotopic compositions in aerosols from 1997 Indonesian forest fires. Geophysical Research Letters, 26(20), 3101-3104.
Ohta, S., & Okita, T. (1990). A chemical characterization of atmospheric aerosol in Sapporo. Atmospheric Environment. Part A. General Topics, 24(4), 815-822.
Park, S. S., Sim, S. Y., Bae, M. S., & Schauer, J. J. (2013). Size distribution of water-soluble components in particulate matter emitted from biomass burning. Atmospheric environment, 73, 62-72.
Ren, X., Harder, H., Martinez, M., Lesher, R. L., Oliger, A., Shirley, T., ... & Brune, W. H. (2003). HOx concentrations and OH reactivity observations in New York City during PMTACS-NY2001. Atmospheric Environment, 37(26), 3627-3637.
Russo, A., Trigo, R. M., Martins, H., & Mendes, M. T. (2014). NO2, PM10 and O3 urban concentrations and its association with circulation weather types in Portugal. Atmospheric Environment, 89, 768-785.
Saxena, P., & Hildemann, L. M. (1996). Water-soluble organics in atmospheric particles: A critical review of the literature and application of thermodynamics to identify candidate compounds. Journal of atmospheric chemistry, 24(1), 57-109.
Shen, Z., Cao, J., Liu, S., Zhu, C., Wang, X., Zhang, T., ... & Hu, T. (2011). Chemical composition of PM10 and PM2.5 collected at ground level and 100 meters during a strong winter-time pollution episode in Xi'an, China. Journal of the Air & Waste Management Association, 61(11), 1150-1159.
Sun, Y. L., Wang, Z. F., Du, W., Zhang, Q., Wang, Q. Q., Fu, P. Q., ... & Worsnop, D. R. (2015). Long-term real-time measurements of aerosol particle composition in Beijing, China: seasonal variations, meteorological effects, and source analysis. Atmospheric Chemistry and Physics, 15(17), 10149-10165.
Sun, Y. L., Wang, Z. F., Fu, P. Q., Yang, T., Jiang, Q., Dong, H. B., ... & Jia, J. J. (2013). Aerosol composition, sources and processes during wintertime in Beijing, China. Atmospheric Chemistry and Physics, 13(9), 4577-4592.
Tedetti, M., Kawamura, K., Narukawa, M., Joux, F., Charriere, B., & Sempéré, R. (2007). Hydroxyl radical-induced photochemical formation of dicarboxylic acids from unsaturated fatty acid (oleic acid) in aqueous solution. Journal of Photochemistry and Photobiology A: Chemistry, 188(1), 135-139.
Vega, E., Reyes, E., Ruiz, H., García, J., Sánchez, G., Martínez-Villa, G., ... & Watson, J. G. (2004). Analysis of PM2. 5and PM10 in the atmosphere of Mexico City during 2000-2002. Journal of the Air & Waste Management Association, 54(7), 786-798.
Wall, S. M., John, W., & Ondo, J. L. (1988). Measurement of aerosol size distributions for nitrate and major ionic species. Atmospheric Environment (1967), 22(8), 1649-1656.
Wang, P., Cao, J. J., Shen, Z. X., Han, Y. M., Lee, S. C., Huang, Y., ... & Huang, R. J. (2015). Spatial and seasonal variations of PM2.5 mass and species during 2010 in Xi'an, China. Science of the total environment, 508, 477-487.
Wang, Q., Cao, J., Shen, Z., Tao, J., Xiao, S., Luo, L., ... & Tang, X. (2013). Chemical characteristics of PM2.5 during dust storms and air pollution events in Chengdu, China. Particuology, 11(1), 70-77.
Wang, Y., Jia, C., Tao, J., Zhang, L., Liang, X., Ma, J., ... & Zhang, K. (2016). Chemical characterization and source apportionment of PM2.5 in a semi-arid and petrochemical-industrialized city, Northwest China. Science of the Total Environment, 573, 1031-1040.
Wang, Y., Zhuang, G., Sun, Y., & An, Z. (2005). Water-soluble part of the aerosol in the dust storm season—evidence of the mixing between mineral and pollution aerosols. Atmospheric Environment, 39(37), 7020-7029.
Wang, Y., Zhuang, G., Zhang, X., Huang, K., Xu, C., Tang, A., ... & An, Z. (2006). The ion chemistry, seasonal cycle, and sources of PM2.5 and TSP aerosol in Shanghai. Atmospheric Environment, 40(16), 2935-2952.
Wongphatarakul, V., Friedlander, S. K., & Pinto, J. P. (1998). A comparative study of PM2.5 ambient aerosol chemical databases. Environmental Science & Technology, 32(24), 3926-3934.
Yao, X., Chan, C. K., Fang, M., Cadle, S., Chan, T., Mulawa, P., ... & Ye, B. (2002). The water-soluble ionic composition of PM2. 5 in Shanghai and Beijing, China. Atmospheric Environment, 36(26), 4223-4234.
Zhou, J., Xing, Z., Deng, J., & Du, K. (2016). Characterizing and sourcing ambient PM2.5 over key emission regions in China I: Water-soluble ions and carbonaceous fractions. Atmospheric Environment, 135, 20-30.
于培倫(2010),中部空品區天氣型態與二次氣膠之探討分析,東海大學環境科學與工程學系碩士論文
尤嵩博(2012),市區秋季之大氣氣膠化學組成及粒徑分佈之特性研究,嘉南藥理科技大學環境工程與科學研究所碩士論文
吳宗德(2015),「台灣地區大氣中衍生性氣膠之轉化速率推估及探討」,國立成功大學環境工程研究所碩士論文
吳義林(2017),「細懸浮微粒與臭氧等多空氣污染物之綜合管制策略」,環保署專案計畫,EPA-105-FA18-03-A171
翁忠聖(2017)衍生性氣膠形成速率與以熱力學模式模擬氣膠系統組成之探討,國立成功大學環境工程研究所碩士論文
張景皓(2016),「南部二次衍生性氣膠形成速率與前驅物探討」,國立成功大學環境工程研究所碩士論文
莊銘棟(2008)從綜觀天氣型態及地形效應探討大台北地區氣膠事件成因,國立中央大學環境工程研究所博士論文
郭崇義(2015),雲林縣細懸浮微粒(PM2.5)濃度及化學組成時空變化調查計畫,環保署專案計畫,103-031
陳士傑(2010),「南台灣沿海地區大氣氣膠特徵探討」,國立屏東科技大學環境工程與科學研究所碩士論文
曾韋勳(2012),高屏大氣懸浮微粒於不同天氣型態之特徵與氣象因子關聯性研究,國立成功大學環境工程研究所碩士論文
曾麗芬(2007),大氣懸浮微粒中溶解性氮物種與天氣型態之研究,國立臺灣海洋大學海洋環境資訊學系碩士論文
楊智翰(2013)境外不同區域長程傳輸對台灣空氣品質影響之模擬研究,國立雲林科技大學環境與安全衛生工程系碩士論文
廖琇怡(2005),高雄市臭氧特性與氣象因子之相關性探討,國立中山大學環境工程研究所碩士論文
蔡依如(2015),境外傳輸對台灣地區懸浮微粒的貢獻度,國立屏東科技大學環境工程與科學研究所碩士論文
賴軍佑(2011),境外傳輸之懸浮微粒及其前驅物對台灣之長期影響模擬分析,國立雲林科技大學環境與安全衛生工程系碩士論文
校內:2023-09-01公開