| 研究生: |
柯淙凱 Ko, Tsun-Kai |
|---|---|
| 論文名稱: |
氮化鎵系列帶通型光檢測器之研究 The Study of Nitride-Based Band-Pass Photodetectors |
| 指導教授: |
張守進
Chang, Shoou-Jinn |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 130 |
| 中文關鍵詞: | 光檢測器 、帶通 、氮化鎵 |
| 外文關鍵詞: | Photodetectors, Band-Pass, Nitride |
| 相關次數: | 點閱:82 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們的目標為製作氮化鎵系列紫外光帶通型光檢測器,其中可分為主要偵測UV-A波段之p-i-n型以及偵測UV-B波段之氮化鋁鎵/氮化鎵蕭基能障型光檢測器。在p-i-n型光檢測器中,我們分別製作出三種不同型態之帶通型光檢測器,分別為元件利用氧化銦錫電極、p型氮化鋁鎵光阻隔層以及使用覆晶封裝技術。首先,氧化銦錫電極部分,我們主要利用此材料雖然在UV-A波段有極佳之穿透率,但是在UV-B波段穿透率卻會嚴重衰減之特性。將此材料做為元件之電極,我們將可製作出只偵測UV-A波段之光檢測器。也由於它在UV-A波段有極佳之穿透率,元件將可達到光響應值0.13 A/W以及UV-A對UV-B阻隔比值(355 nm : 300 nm) 19.7。另外在利用p型氮化鋁鎵做為光阻隔層之元件,若使用300 nm 厚度之p型氮化鋁鎵,元件顯示出最佳帶通光響應圖,其UV-A對UV-B阻隔比值為25。除此之外,我們也針對此元件之抗靜電力特性以及施加高反向電流之退化程度來看元件之可靠度特性,其中元件使用300 nm 厚度之p型氮化鋁鎵將可承受反向8000 V之抗靜電力以及24小時連續反向施加0.4 mA於元件上。
在使用覆晶封裝技術來製作光檢測器方面,我們分別製作兩種不同結構:分別是使用氮化銦鎵光吸收層和n型氮化鋁鎵光阻隔層。其中元件利用氮化銦鎵做為光吸收層將可達到0.20 A/W光響應值、1.4×1013 cmHz0.5W-1檢測度和UV-A對UV-B阻隔比值(370 nm : 300 nm) 為519。另外一方面,我們也可以藉由調整n型光阻隔層之厚度以及使用不同之光吸收層(氮化鎵或氮化銦鎵)來改變光檢測器之頻寬。
至於在氮化鋁鎵/氮化鎵蕭基能障型光檢測器方面,我們首先針對元件結構最上層之低溫成長氮化鎵磊晶層厚度做最佳化探討,實驗顯示若使用15 nm之低溫成長氮化鎵磊晶層將可達到最佳之光響應值0.07 A/W和UV-A對可見光阻隔比值(320 nm : 420 nm) 700。除此之外,我們也可以藉由調整氧化銦錫蒸鍍條件和熱處理與否來調整光檢測器在UV-B波段之偵測頻寬。在-1 V之操作電壓上,使用未熱處理70 nm厚度之氧化銦錫做為氮化鋁鎵/氮化鎵蕭基能障型光檢測器之電極將可達到0.12 A/W 光響應值和 1.0×1012 cmHz0.5W-1之偵測度,這些數值都比傳統使用鎳金電極之氮化鋁鎵/氮化鎵蕭基能障型光檢測器來的高。
The main goal of this dissertation is the achievement of nitride-based UV band-pass photodetectors. The dissertation is divided into two parts, one is the study of nitride-based p-i-n UV-A band-pass photodetectors, and another one is the study of AlGaN/GaN Schottky-barrier UV-B band-pass photodetectors. In the study of p-i-n UV-A band-pass photodetectors, three types of band-pass photodetectors: photodetectors with ITO contacts, photodetectors with p-AlGaN blocking layers and flip-chip photodetectors were studied. Although ITO is transparent in visible and UV-A region, its transmittance decreases significantly in UV-B region. As a result, p-i-n band-pass photodetectors with ITO contacts can be realized. We can also achieve higher peak responsivity of 0.13 A/W and UV-A/UV-B (355 nm : 300 nm) rejection ratio of 19.7 with ITO contacts due to its higher transmittance. For photodetectors with p-AlGaN blocking layer, the devices with 300 nm-thick p-AlGaN blocking layer shows the best band-pass characteristics. The UV-A/UV-B rejection ratio was estimated to be 25. Furthermore, the ESD and high reverse current stressing on photodetectors with p-AlGaN blocking layer were also studied. The heterostructure photodetectors with 300-nm-thick p-AlGaN blocking layer can endure an extremely large -8000 V ESD surge and reverse 0.4 mA current stressing for 24 hours.
For flip-chip p-i-n UV-A band-pass photodetectors, two kinds of epitaxial structure, photodetectors with InGaN absorption layer and with n-AlGaN blocking layer were designed. By using flip-chip technology, we can realize much high responsivity of 0.20 A/W, high detectivity of 1.4×1013 cmHz0.5W-1, and high UV-A/UV-B (370 nm : 300 nm) rejection ratio of 519 for photodetectors with InGaN absorption layer. On other hand, by modulating the thickness of the blocking layer (n-AlGaN) and absorption layer (i-GaN or i-InGaN), it is possible to tune the optical bandwidth and central wavelength of the photodetectors’s UV responsivity.
On the part of AlGaN/GaN Schottky-barrier UV-B band-pass photodetectors, we fine tune the thickness of low-temperature-grown GaN cap layer (LT-GaN). With 15-nm-thick LT-GaN cap layer, the responsivity of 0.07 A/W and UV to visible rejection ratio (320 nm : 420 nm) of 700 can be achieved. Furthermore, we can realize UV-B band-pass photodetectors with different bandwidths by controlling ITO thickness and annealing conditions. With -1 V applied bias, we found that responsivity of 0.12 A/W and detectivity of 1.0×1012 cmHz0.5W-1 for nun-annealed 70-nm-thick ITO contact. The properties of these AlGaN/GaN Schottky-barrier photodetectors were superior to those of conventional Schottky-barrier photodetectors with Ni/Au contacts.
Chapter 1
[1] K. Kheng, M. Ramsteiner, H. Schneider, J. D. Ralston, F. Fuchs, and P. Koidl, “Two-color GaAs/(AlGa)As quantum well infrared detector with voltage-tunable spectral sensitivity at 3-5 and 8-12 μm”, Appl. Phys. Lett., Vol. 61, No. 6, pp. 666-668, 1992.
[2] W. Q. Li, M. Karakucuk, P. N. Freeman, J. R. East, G. I. Haddad, and P. K. Bhattacharya, “High-speed Al0.2Ga0.8As/GaAs multi-quantum-well phototransistors with tunable spectral response”, IEEE Electron Device Lett., Vol. 14, No. 7, pp. 335-337, 1993.
[3] J. C. Chiang, S. S. Li, M. Z. Tidrow, P. Ho, M. Tsai, and C. P. Lee, “A voltage-tunable multicolor triple-coupled InGaAs/GaAs/AlGaAs quanyum-well infrared photodetector for 8-12 μm detection”, Appl. Phys. Lett., Vol. 69, No. 16, pp. 2412-2414, 1996.
[4] X. Jiang, S. S. Li, and M. Z. Tidrow, “Investigation of a multistack voltage-tunable four-color quantum-well infrared photodetector for mid- and long-wavelength infrared detection”, IEEE J. Quantum Electron., Vol. 35, No. 11, pp. 1685-1692, 1999.
[5] A. Majumdar, K. K. Choi, J. L. Reno, and D. C. Tsui, “Voltage tunable two-color infrared detection using semiconductor superlattices”, Appl. Phys. Lett., Vol. 83, No. 25, pp. 5130-5132, 2003.
Chapter 2
[1] I.Adessida, A.Mahajan, E.Andideh, M.A.Kahn, D.T.Olson, and J.N. Kuznia, Appl.Phys.Lett. 63 2777 (1993).
[2] S.J.Pearton, C.R.Abernathy, F.Ren, J.R.Lothian, J.Vac.Sci.Technol.A
11 1772 (1993).
[3] R.J.Shul, G.B.McClellan, S.A.Casalnuovo, D.J.Rieger, Appl.Phys. Lett. 69 1119 (1996).
[4] 國立成功大學博士論文 Fabrication and Characterization of Gallium Nitride Based Ultraviolet Photodetectors by Ming-Lun Li.
[5] 國立成功大學博士論文 The Study of Brightness, Reliability and ESD ability on Nitride-based LEDs by Chia-Sheng Chang.
Chapter 3
[1] Y. K. Su, S. J. Chang, C. H. Chen, J. F. Chen, G. C. Chi. J. K. Sheu, W. C. Lai and J. M. Tsai, "GaN metal-semiconductor-metal ultraviolet sensors with various contact electrodes", IEEE Sensors Journal, Vol. 2, No. 4, pp. 366-371, 2002.
[2] E. Monroy, E. Munoz, F. J. Sanchez, F. Calle, E. Calleja, B. Beaumout, P. Gibart, J. A. Munoz and F. Cusso, “High-performance GaN p-n junction photodetectors for solar ultraviolet applications”, Semicond. Sci. Technol., vol. 13, pp. 1042-1046, 1998.
[3] G. Parish, S. Keller, P. Kozodoy, J. A. Ibbetson, H. Marchand, P. T. Fini, S. B. Fleischer, S. P. DenBaars and U. K. Mishra, “High-performance (Al,Ga)N-based solar-blind ultraviolet p-i-n detectors on laterally epitaxially overgrown GaN”, Appl. Phys. Lett., vol. 75, pp. 247-249, 1999.
[4] E. Monroy, M. Hamilton, D. Walker, P. Kung, F. J. Sánchez and M.Razeghi, “High-quality visible-blind AlGaN p-i-n photodiodes”, Appl. Phys. Lett., vol. 74, pp. 1171-1173, 1999.
[5] Q. Chen, J. W. Yang, A. Osinsky, S. Gangopadhyay, B. Lim, M. Z. Anwar, M. A. Khan, D. Kuksenkov and H. Temkin, “Schottky barrier detectors on GaN for visible-blind ultraviolet detection”, Appl. Phys. Lett., vol. 70, pp. 2277-2279, 1997.
[6] S. J. Chang, M. L. Lee, J. K. Sheu, W. C. Lai, Y. K. Su, C. S. Chang, C. J. Kao, G. C. Chi and J. M. Tsai, "GaN metal-semiconductor-metal photodetectors with low-temperature GaN cap layers and ITO metal contacts", IEEE Electron. Dev. Lett., Vol. 24, No. 4, pp. 212-214, 2003.
[7] Z. M. Zhao, R. L. Jiang, P. Chen, D. J. Xi, Z. Y. Luo, R. Zhang, B. Shen, Z. Z. Chen and Y. D. Zheng, “Metal-semiconductor-metal GaN ultraviolet photodetectors on Si(111)”, Appl. Phys. Lett., vol. 77, pp. 444-446, 2000.
[8] Z. C. Huang, J. C. Chen and D. Wickenden, “Characterization of GaN using thermally stimulated current and photocurrent spectroscopies and its application to UV detectors”, J. Cryst. Growth, vol. 170, pp. 362, 1997.
[9] Y. Z. Chiou, Y. K. Su, S. J. Chang, J. Gong, Y. C. Lin, S. H. Liu and C. S. Chang, “High detectivity InGaN-GaN multiquantum well p-n junction photodiodes”, IEEE J. Quan. Electron., Vol. 39, No. 5, pp. 681-685, 2003.
[10] S. Nakamura, M. Senoh, N. Iwasa and S. Nagahama, “High-power InGaN single-quantum-well-structure blue and violet light-emitting diodes”, Appl. Phys. Lett., Vol. 67, No.13, pp. 1868-1870, 1995
[11] S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu and U. H. Liaw, "InGaN/GaN multiquantum well blue and green light emitting diodes", IEEE J. Sel. Top. Quan. Electron., Vol. 8, No. 2, pp. 278-283, 2002
[12] C. S. Chang, S. J. Chang, Y. K. Su, C. H. Kuo, W. C. Lai, Y. C. Lin, Y. P. Hsu, S. C. Shei, C. M. Tsai, H. M. Lo, J. C. Ke and J. K. Sheu, "High brightness InGaN LEDs with an ITO on n++-SPS upper contact", IEEE Tran. Electron. Dev., Vol. 50, No. 11, pp. 2208-2212, 2003.
[13] S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, Y. C. Lin, S. C. Shei, H. M. Lo, H. Y. Lin and J. C. Ke, "Highly reliable nitride based LEDs with SPS+ITO upper contacts", IEEE J. Quan. Electron., Vol. 39, No. 11, pp. 1439-1443, 2003.
[14] R. Pastila and D. Leszczynski, ”Ultraviolet A exposure might increase metastasis of mouse melanoma: a pilot study”, Photodermatology Photoimmunology Photomedicine, Vol. 21, pp. 183-190, 2005
[15] M. Kobayashi, J. Ueno, M. Enami, S. Katsuta, A. Ichiba, K. Ogura, K. Onomitsu and Y. Horikoshi, ”Growth and UV-A sensor applications of MgCdS/ZnCdS superlattices”, J. Crystal Growth, Vol. 278, pp. 273-277, 2005.
[16] S. Nakamura and M. Senoh, ”Superbright green InGaN single-quantum-well-structure light-emitting diodes”, Jpn. J. Appl. Phys., Vol.34, L1332-L1335, 1995.
[17] C. H. Kuo, J. K. Sheu, G. C. Chi, Y. L. Huang, and T. W. Yeh, "Low-resistance Ni/Au ohmic contact to Mg-doped of Al0.15Ga0.85N/GaN superlattices", Solid-State Electron., Vol. 45, pp. 717-720, 2001.
[18] J. K. Sheu, C. H. Kuo, C. C. Chen, G. C. Chi, and M. J. Jou, "Characterization of the properties of Mg-doped Al0.15Ga0.85N/GaN superlattices" , Solid-State Electron., Vol. 45, pp. 1665-1671, 2001.
[19] J. K. Sheu, G. C. Chi, and M. J. Jou, ”Low-Operation Voltage of InGaN/GaN Light Emitting Diodes by Using a Mg-doped Al0.15Ga0.85N/GaN superlattice”, IEEE Electron Device Lett., Vol. 22, pp. 160-162, 2001.
[20] L. S. Yeh, M. L. Lee, J. K. Sheu, M. G. Chen, C. J. Kao, G. C. Chi, S. J. Chang Y. K. Su, ”Visible-blind p-i-n photodiodes with an Al0.12Ga0.88N/GaN superlattice structure,” Solid-State Electron., Vol. 47, pp. 873-878, 2003.
[21] S. J. Chang, L. W. Wu, Y. K. Su, Y. P. Hsu, W. C. Lai, J. M. Tsai, J. K. Sheu and C. T. Lee, "Nitride-based LEDs with 800oC-grown p-AlInGaN/GaN double cap layers", IEEE Photon. Technol. Lett., Vol. 16, No. 6, pp. 1447-1449, 2004.
[22] S. J. Chang, C. H. Chen, Y. K. Su, J. K. Sheu, W. C. Lai, J. M. Tsai, C. H. Liu and S. C. Chen, "Improved ESD protection by combining InGaN/GaN MQW LED with GaN Schottky diode", IEEE Electron. Dev. Lett., Vol. 24, No. 3, pp. 129-131, 2003
[23] S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen and J. M. Tsai, "400nm InGaN/GaN and InGaN/AlGaN multiquantum well light-emitting diodes", IEEE J. Sel. Top. Quan. Electron., Vol. 8, No. 4, pp. 744-748, 2002
Chapter 4
[1] R. Pastila and D. Leszczynski, ”Ultraviolet A exposure might increase metastasis of mouse melanoma: a pilot study”, Photodermatology Photoimmunology Photomedicine, Vol. 21, pp. 183-190, 2005
[2] M. Kobayashi, J. Ueno, M. Enami, S. Katsuta, A. Ichiba, K. Ogura, K. Onomitsu and Y. Horikoshi, ”Growth and UV-A sensor applications of MgCdS/ZnCdS superlattices”, J. Crystal Growth, Vol. 278, pp. 273-277, 2005.
[3] S. Nakamura and M. Senoh, ”Superbright green InGaN single-quantum-well-structure light-emitting diodes”, Jpn. J. Appl. Phys., Vol.34, L1332-L1335, 1995.
[4] O. M. Nayfeh, S. Rao, A. Smith, J. Therrien, and M. H. Nayfeh, “Thin Film Silicon Nanoparticle UV Photodetector”, IEEE Photonics Technol. Lett., Vol. 16, No. 8, pp. 1927-1929, 2004
[5] F. Yan, X. Xin, S. Aslam, Y. Zhao, D. Franz, J. H. Zhao, and M. Weiner, “4H-SiC UV Photo Detectors With Large Area and Very High Specific Detectivity”, IEEE J. Quantum Elec., Vol. 40, No. 9, pp. 1315-1320, 2004
[6] T. K. Lin, S. J. Chang, Y. K. Su, Y. Z. Chiou, C. K. Wang, C. M. Chang, and B. R. Huang, “ZnSe Homoepitaxial MSM Photodetectors With Transparent ITO Contact Electrodes”, IEEE Trans. Electron Dev., Vol. 52, No. 1, pp. 121-123, 2005
[7] T. Mukai, M. Yamada, and S. Nakamura, “Characteristics of InGaN-Based UV/Blue/Green/Amber/Red Light-Emitting Diodes,” Jpn. J. Appl. Phys., Vol.38, L3976-3981, 1999.
[8] M. L. Lee, J. K. Sheu, W. C. Lai, S. J. Chang, Y. K. Su, M. G. Chen, C. J. Kao, G. C. Chi, and J. M. Tsai, “GaN Schottky barrier photodetectors with a low-temperature GaN cap layer”, Appl. Phys. Lett., Vol. 82, pp. 2913-2915, 2003
[9] Y. K. Su, Y. Z. Chiou, F. S. Juang, S. J. Chang and J. K. Sheu, “GaN and InGaN metal-semiconductor-metal photodetectors with different Schottky contact metals”, Jpn. J. Appl. Phys., Vol.40, pp. 2996-2999, 2001.
[10] Yu-Zung Chiou, “Nitride-base Band-pass p-i-n Photodetectors”, IEEE Electron Dev. Lett., Vol.26, pp 172-174, 2005
[11] Y. Z. Chiou, S. J. Chang, Y. K. Su, C. K. Wang, T. K. Lin and B. R. Huang, “Photo-CVD SiO2 layers on AlGaN and AlGaN-GaN MOSHFET”, IEEE Trans. Electron Dev., Vol. 50, pp. 1748-1752, 2003.
[12] G. Parish, S. Keller, P. Kozodoy, J. A. Ibbetson, H. Marchand, P. T. Fini, S. B. Fleischer, S. P. DenBaars and U. K. Mishra, “High-performance (Al,Ga)N-based solar-blind ultraviolet p-i-n detectors on laterally epitaxially overgrown GaN”, Appl. Phys. Lett., vol. 75, pp. 247-249, 1999.
[13] E. Monroy, M. Hamilton, D. Walker, P. Kung, F. J. Sánchez and M.Razeghi, “High-quality visible-blind AlGaN p-i-n photodiodes”, Appl. Phys. Lett., vol. 74, pp. 1171-1173, 1999.
[14] Q. Chen, J. W. Yang, A. Osinsky, S. Gangopadhyay, B. Lim, M. Z. Anwar, M. A. Khan, D. Kuksenkov and H. Temkin, “Schottky barrier detectors on GaN for visible-blind ultraviolet detection”, Appl. Phys. Lett., vol. 70, pp. 2277-2279, 1997.
[15] S. J. Chang, M. L. Lee, J. K. Sheu, W. C. Lai, Y. K. Su, C. S. Chang, C. J. Kao, G. C. Chi and J. M. Tsai, "GaN metal-semiconductor-metal photodetectors with low-temperature GaN cap layers and ITO metal contacts", IEEE Electron. Dev. Lett., Vol. 24, No. 4, pp. 212-214, 2003.
[16] Z. M. Zhao, R. L. Jiang, P. Chen, D. J. Xi, Z. Y. Luo, R. Zhang, B. Shen, Z. Z. Chen and Y. D. Zheng, “Metal-semiconductor-metal GaN ultraviolet photodetectors on Si(111)”, Appl. Phys. Lett., vol. 77, pp. 444-446, 2000.
[17] Z. C. Huang, J. C. Chen and D. Wickenden, “Characterization of GaN using thermally stimulated current and photocurrent spectroscopies and its application to UV detectors”, J. Cryst. Growth, vol. 170, pp. 362, 1997.
[18] Y. Z. Chiou, Y. K. Su, S. J. Chang, J. Gong, Y. C. Lin, S. H. Liu and C. S. Chang, “High detectivity InGaN-GaN multiquantum well p-n junction photodiodes”, IEEE J. Quan. Electron., Vol. 39, No. 5, pp. 681-685, 2003.
[19] S. J. Chang, C. H. Chen, Y. K. Su, J. K. Sheu, W. C. Lai, J. M. Tsai, C. H. Liu and S. C. Chen, “Improved ESD protection by combining InGaN-GaN MQW LEDs with GaN Schottky diodes”, IEEE Electron Dev. Lett., vol. 24, pp. 129-131, 2003.
[20] T. Inoue, "Light-emitting device", Japanese Patent H11-040848 (1999)
[21] T. C. Wen, S. J. Chang, C. T. Lee, W. C. Lai and J. K. Sheu, "Nitride-based LEDs with modulation doped Al0.12Ga0.88N/GaN superlattice structures", IEEE Tran. Electron. Dev., vol. 51, pp. 1743-1746, 2004
[22] D. Brunner, H. Angerer, E. Bustarret, F. Freudenberg, R. Höpler, R. Dimitrov, O. Ambacher, and M. Stutzmann, “Optical constants of epitaxial AlGaN films and their temperature dependence”, J. Appl. Phys., Vol. 82, pp. 5090-5096, 1997
[23] J. F. Muth, J. D. Brown, M. A. L. Johnson, Zhonghai Yu, R. M. Kolbas, J.W. Cook and J. F. Schetzina, “Absorption Coefficient and Refractive Index of GaN, AlN and AlGaN Alloys”, J. Nitride Semicond. Res., pp. G52-G54, 1999.
Chapter 5
[1] J. J. Wierer, D. A. Steigerwald, M. R. Krames, J. J. O'Shea, M. J. Ludowise, G. Christenson, Y. C. Shen, C. Lowery, P. S. Martin, S. Subramanya, W. Götz, N. F. Gardner, R. S. Kern and S. A. Stockman., “High-power AlGaInN flip-chip light-emitting diodes”, Appl. Phys. Lett. Vol. 78, No. 22, pp. 3379-3381, 2003.
[2] J. Song J, D. S. Leem, J. S. Kwak, O. H. Nam, Y. Park and T. Y. Seong, “Low resistance and reflective Mg-doped indium oxide-Ag ohmic contacts for flip-chip light-emitting diodes”, IEEE Photon. Technol. Lett., Vol. 16, No. 6, pp. 1450-1452, 2004.
[3] A. Chitnis, J. Sun, V. Mandavilli, R. Pachipulusu, S. Wu, M. Gaevski, V. Adivarahan, J. P. Zhang, M. A. Khan, A. Sarua and M. Kuball, “Self-heating effects at high pump currents in deep ultraviolet light-emitting diodes at 324 nm”, Appl. Phys. Lett. Vol. 81, No. 18, pp. 3491-3493, 2002.
[4] M. Koike, N. Shibata, H. Kato and Y. Takahashi, “Development of high efficiency GaN-based multiquantum-well light-emitting diodes and their applications”, IEEE J. Sel. Top. Quan. Electron., Vol. 8, No. 2, pp. 271-277, 2002.
[5] K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, T. Jyouichi, Y. Imada, M. Kato, H. Kudo and T. Taguchi, “High output power InGaN ultraviolet light plus emitting diodes fabricated on patterned substrates using metalorganic vapor phase epitaxy”, Phys. Stat. Sol. (A), Vol. 188, No. 1, pp. 121-125, 2001.
[6] K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, Y. Imada, M. Kato and T. Taguchi, “High output power InGaN ultraviolet light-emitting diodes fabricated on patterned substrates using metalorganic vapor phase epitaxy”, Jpn. J. Appl. Phys. Part 2, Vol. 40, No. 6B, pp. L583-L585, 2001.
[7] K. S. Chae, I. H. Lee, B. J. Baek, K. W. Seol, H. K. Ahn and C. R. Lee, “Characteristics of back-illumination UV photodetector fabricated with AlxGa1-xN heterostructure”, Jpn. J. Appl. Phys., Vol. 44, No. 4B, pp. 2553-2555, 2005
[8] K. S. Chae, D. W. Kim, B. S. Kim, S. J. Som, I. H. Lee and C. R. Lee, “Characteristics of back-illuminated visible-blind UV photodetector based on AlxGa1-xN p-i-n photodiodes”, J. Crystal Growth, Vol. 276, No. 3-4, pp. 367-373, 2005
[9] H. S. Han, H. S. Chung, Y. I. Joe, S. S. Park, G. C. Joo, N. Hwang and M. Y. Song, “The application of flip-chip bonding interconnection technique on the module assembly of 10 Gbps laser diode”, J. Electron. Mater., Vol. 27, No. 8, pp. 985-989. 1998
[10] S. J. Chang, C. H. Chen, P. C. Chang, Y. K. Su, P. C. Chen, Y. D. Jhou, H. Hung, C. M. Wang and B. R. Huang, "Nitride-based LEDs with p-InGaN capping layer", IEEE Tran. Electron. Dev., Vol. 50, No. 12, pp. 2567-2570, 2003.
[11] S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu and U. H. Liaw, "InGaN/GaN multiquantum well blue and green light emitting diodes", IEEE J. Sel. Top. Quan. Electron., Vol. 8, No. 2, pp. 278-283, 2002.
[12] S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen and J. M. Tsai, "400nm InGaN/GaN and InGaN/AlGaN multiquantum well light-emitting diodes", IEEE J. Sel. Top. Quan. Electron., Vol. 8, No. 4, pp. 744-748, 2002.
[13] S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, Y. C. Lin, S. C. Shei, H. M. Lo, H. Y. Lin and J. C. Ke, "Highly reliable nitride based LEDs with SPS+ITO upper contacts", IEEE J. Quan. Electron., Vol. 39, No.11, pp. 1439-1443, 2003.
[14] N. Biyikli, I. Kimukin, O. Aytur and E. Ozbay, “Solar-blind AlGaN-based p-i-n photodiodes with low dark current and high detectivity”, IEEE Photon. Technol. Lett., Vol. 16, No. 7, pp. 1718-1720, 2004
[15] J. F. Muth, J. D. Brown, M. A. L. Johnson, Z. Yu, R. M. Kolbas, J.W. Cook and J. F. Schetzina, “Absorption Coefficient and Refractive Index of GaN, AlN and AlGaN Alloys,“ J. Nitride Semicond. Res., Vol. 4S1, pp. G5.2-G5.4, 1999.
Chapter 6
[1] R. Pastila and D. Leszczynski, ”Ultraviolet A exposure might increase metastasis of mouse melanoma: a pilot study”, Photodermatology Photoimmunology Photomedicine, Vol. 21, pp. 183-190, 2005
[2] M. Kobayashi, J. Ueno, M. Enami, S. Katsuta, A. Ichiba, K. Ogura, K. Onomitsu and Y. Horikoshi, ”Growth and UV-A sensor applications of MgCdS/ZnCdS superlattices”, J. Crystal Growth, Vol. 278, pp. 273-277, 2005.
[3] S. Nakamura and M. Senoh, ”Superbright green InGaN single-quantum-well-structure light-emitting diodes”, Jpn. J. Appl. Phys., Vol.34, L1332-L1335, 1995.
[4] E. Monroy, E. Munoz, F. J. Sanchez, F. Calley, E. Calleja, B. Beaumont, P. Gibart, J. A. Munoz, and F. Cusso, “High-performance GaN p-n junction photodetectors for solar ultraviolet applications”, Semicond. Sci. Technol., Vol. 13, pp. 1042–1046, 1998
[5] Y. Z. Chiou, Y. K. Su, S. J. Chang, J. Gong, Y. C. Lin, S. H. Liu, and C. S. Chang, “High detectivity InGaN-GaN multiquantum well p-n junction photodiodes”, IEEE J. Quantum Electron., Vol. 39, No. 5, pp. 681-685, 2003
[6] N. Biyikli, I. Kimukin, O. Aytur, and E. Ozbay, “Solar-blind AlGaN-based p-i-n photodiodes with low dark current and high detectivity”, IEEE Photon. Technol. Lett., Vol. 16, No. 7, pp. 1718-1720, 2004
[7] G. Y. Xu, A. Salvador, W. Kim, Z. Fan, C. Lu, H. Tang, H. Morkoc¸ G. Smith, M. Estes, B. Goldenberg, W. Yang, and S. Krishnankutty, “High speed, low noise ultraviolet photodetectors based on GaN p-i-n and AlGaN(p)-GaN(i)-GaN(n) structures”, Appl. Phys. Lett., Vol. 71, No. 15, pp. 2154-2156, 1997
[8] N. Biyikli, I. Kimukin, T. Tut, T. Kartaloglu, O. Aytur, and E. Ozbay, “High-speed characterization of solar blind AlxGa1-xN p–i–n photodiodes”, Semicond. Sci. Technol., Vol. 19, pp. 1259–1262, 2004
[9] G. Parish, S. Keller, P. Kozodoy, J. P. Ibbetson, H. Marchand, P. T. Fini, S. B. Fleischer, S. P. DenBaars, U. K. Mishra, and E. J. Tarsa, “High-performance (Al,Ga)N-based solar-blind ultraviolet p–i–n detectors on laterally epitaxially overgrown GaN”, Appl. Phys. Lett., Vol. 75, No. 2, pp. 247-249, 1999
[10] A. Osinsky, S. Gangopadhyay, R. Gaska, B. Williams, M. A. Khan, D. Kuksenkov, and H. Temkin, “Low noise p-π-n GaN ultraviolet photodetectors”, Appl. Phys. Lett., Vol. 71, No. 16, pp. 2334-2336, 1997
[11] O. Katz, V. Garber, B. Meyler, G. Bahir, and J. Salzman, “Anisotropy in detectivity of GaN Schottky ultraviolet detectors: Comparing lateral and vertical geometry”, Appl. Phys. Lett., Vol. 80, No. 3, pp. 347-349, 2002
[12] O. Katz, G. Bahir, and J. Salzman, “Persistent photocurrent and surface trapping in GaN Schottky ultraviolet detectors”, Appl. Phys. Lett., Vol. 84, No. 20, pp. 4092-4094, 2004
[13] O. Katz, V. Garber, B. Meyler, G. Bahir, and J. Salzman, “Gain mechanism in GaN Schottky ultraviolet detectors”, Appl. Phys. Lett., Vol. 79, No. 10, pp. 1417-1419, 2001
[14] E. Monroy, T. Palacios, O. Hainaut, F. Omnes, F. Calle, and J. F. Hochedez, “Assessment of GaN metal-semiconductor-metal photodiodes for high-energy ultraviolet photodetection”, Appl. Phys. Lett., Vol. 80, No. 17, pp. 3198-3200, 2002
[15] Y. K. Su, Y. Z. Chiou, F. S. Juang, S. J. Chang, and J. K. Sheu, “GaN and InGaN metal-semiconductor-metal Photodetectors with different Schottky contact metals”, Jpn. J. Appl. Phys., Vol. 40, No. 4B, pp. 2996-2999, 2001.
[16] M. Mosca, J. L. Reverchon, F. Omnes, and J. Y. Duboz, “Effects of the buffer layers on the performance of (Al,Ga)N ultraviolet photodetectors”, Appl. Phys. Lett., Vol. 95, No. 8, pp. 4367-4370, 2004
[17] T. Palacios, E. Monroy, F. Calle, and F. Omnes, “High-responsivity submicron metal-semiconductor-metal ultraviolet detectors”, Appl. Phys. Lett., Vol. 81, No. 10, pp. 1902-1904, 2002
[18] J. Lia, Y. Xu, T. Y. Hsiang, and W. R. Donaldson, “Picosecond response of gallium-nitride metal-semiconductor-metal photodetectors”, Appl. Phys. Lett., Vol. 84, No. 12, pp. 2091-2093, 2004
[19] J. L. Pau, C. Rivera, E. Munoz, E. Calleja, U. Schuhle, E. Frayssinet, B. Beaumont, J. P. Faurie, and P. Gibart, “Response of ultra-low dislocation density GaN photodetectors in the near- and vacuum-ultraviolet”, J. Appl. Phys., Vol. 95, No. 12, pp. 8275-8279, 2004
[20] Y. Z. Chiou and J. J. Tang, “GaN photodetectors with transparent indium tin oxide electrodes”, Jpn. J. Appl. Phys., Vol. 43, No. 7A, pp. 4146-4149, 2004
[21] C. K. Wang, S. J. Chang, Y. K. Su, C. S. Chang, Y. Z. Chiou, C. H. Kuo, T. K. Lin, T. K. Ko and J. J. Tang, “GaN MSM photodetectors with TiW transparent electrodes”, Mater. Sci. Eng. B., Vol. 112, pp. 25-29, 2004.
[22] T. Palacios, F. Calle, E. Monroy, and F. Omnes, “Novel approaches for metal-semiconductor-metal GaN UV photodetectors”, Phys. Stat. Sol. (a), Vol. 194, No. 2, pp. 476-479, 2002
[23] M. L. Lee, J. K. Sheu, W. C. Lai, S. J. Chang, Y. K. Su, M. G. Chen, C. J. Kao, G. C. Chi, and J. M. Tsai, “GaN Schottky barrier photodetectors with a low-temperature GaN cap layer”, Appl. Phys. Lett., Vol. 82, No. 17, pp. 2913-2915, 2003.
[24] M. L. Lee, J. K. Sheu, Y. K. Su, S. J. Chang, W. C. Lai, and G. C. Chi, “Reduction of dark current in AlGaN-GaN Schottky-barrier photodetectors with a low-temperature-grown GaN cap layer”, IEEE Electron Device Lett., Vol. 25, No. 9, pp. 593-595, 2004.
[25] Y. K. Su, S. J. Chang, C. H. Chen, J. F. Chen, G. C. Chi. J. K. Sheu, W. C. Lai and J. M. Tsai, "GaN metal-semiconductor-metal ultraviolet sensors with various contact electrodes", IEEE Sensors Journal, Vol. 2, No. 4, pp. 366-371, 2002.
[26] D. V. Morgan, Y. H. Aliyu, R. W. Bunce and A. Salehi, "Annealing effects on opto-electronic properties of sputtered and thermally evaporated indium-tin-oxide films", Thin Solid Films, Vol. 312, No. 1-2, pp. 268-272, 1998
[27] T. Minami, H. Sonohara, T. Kakumu and S. Takata, "Physics of very thin ITO conducting films with high transparency prepared by DC magnetron sputtering", Thin Solid Films, Vol. 270, No. 1-2 pp. 37-42, 1995
[28] R. X. Wang, C. D. Beling, S. Fung, A. B. Djurisic, C. C. Ling, C. Kwong and S. Li, "Influence of annealing temperature and environment on the properties of indium tin oxide thin films", J. Phys. D, Vol. 38, No. 12, pp. 2000-2005, 2005
[29] Y. L. Hu, X. G. Diao, C. Wang, W. C. Hao and T. M. Wang, "Effects of heat treatment on properties of ITO films prepared by rf magnetron sputtering ", Vacuum, Vol. 75, No. 2, pp. 183-188, 2004
[30] A. Fujisawa, T. Nishino and Y. Hamakawa, “Hall-Effect Measurement on Polycrystalline SnO2 Thin Films “ Jpn. J. Appl. Phys. Vol.27, pp.552-555, 1988.
Chapter 7
[1] B. Yang, K. Heng, T. Li, C. J. Collins, S. Wang, R. D. Dupuis, J. C. Campbell, M. J. Schurman, and I. T. Ferguson, “32×32 ultraviolet Al0.1Ga0.9N/GaN p-i-n photodetector array”, IEEE J. Quantum Electron., Vol. 36, No. 11, pp. 1229-1231, 2000.
[2] J. D. Brown, J. Boney, J. Matthews, P. Srinivasan, J. F. Schetzina, T. Nohava, W. Yang, and S. Krishnankutty, “UV-specific (320-365nm) digital camera based on a 128×128 focal plane array of GaN/AlGaN p-i-n photodiodes”, MRS Internet J. Nitride Semicond. Res., Vol. 5, No. 6, 2000.
[3] Z. Hassan, Y. C. Lee, F. K. Yam, M. J. Abdullah, K. Ibrahim and M. E. Kordesch, “Microcrystalline GaN film grown on Si(100) and its application to MSM photodiode”, Mater. Chem. Phys., Vol. 84, pp. 369-374, 2004.
[4] Y. Z. Chiou, Y. C. Lin, and C. K. Wang, ” AlGaN photodetectors prepared on Si substrates”, IEEE Electron Device Lett., Vol. 28, pp. 264-266, 2007
[5] S. J. Chang, T. K. Ko, J. K. Sheu, S. C. Shei, W. C. Lai, Y. Z. Chiou, Y. C. Lin, C. S. Chang, W. S. Chen, and C. F. Shen, “AlGaN Ultraviolet Metal-Semiconductor-Metal Photodetectors Grown on Si substrates”, Sensors and Actuators A: Physical, Vol. 135, No. 2, pp. 502-506, April 2007.