簡易檢索 / 詳目顯示

研究生: 黃名正
Huang, Ming-Cheng
論文名稱: 滾珠軸承轉子系統之非線性動態分析
Nonlinear Dynamic Analysis of Rotor-Ball Bearing Systems
指導教授: 崔兆棠
Choi, Siu-Tong
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 73
中文關鍵詞: 非線性滾珠軸承轉子軸承系統分岔圖
外文關鍵詞: nonlinear, ball bearing, rotor-bearing system, bifurcation diagram
相關次數: 點閱:114下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文研究滾珠軸承轉子系統的非線性動態特性。系統由一含間隙之滾珠軸承支撐一水平轉軸,並且有一恆定的垂直徑向預壓,其中轉軸為剛體且與內環緊密相連無滑動。非線性是由於軸承中滾珠與環之間的赫茲接觸、內部徑向間隙以及軸 承的變剛度。本文透過分岔圖、瀑布圖、頻譜圖、吸引子及龐加萊映射,探討軸承間隙、垂直徑向預壓以及滾珠數量,對於系統動態行為的影響。由數值結果顯示,在軸承的間隙增加至系統出現不穩定的響應之後,隨著間隙的增加,系統不穩定區域的範圍會越大。軸承預壓的增加,系統不穩定區域會往高轉速的方向偏移。軸承的滾珠數量越多,系統不穩定區域的範圍會越小,且系統不穩定區域會往低轉速方向偏移。

    Nonlinear dynamic behavior of rotor-ball bearing systems is studied. The system consists of a horizontal shaft which is supported by a ball bearing with clearance and a constant vertical radial preload. The shaft is considered to be rigid and is tied to the inner ring without slipping. The non-linearity is due to the radial internal clearance and the Hertzian contact between the ring and the balls; there is also a parametric effect because of the varying compliance of the bearing. Through the bifurcation diagrams, waterfall plots, spectrograms, attractors and Poincaré maps, effects of bearing parameters, such as, clearance, vertical radial preload, number of balls on dynamic behavior of the system are studied. Numerical results show that, after when unstable response has occurred, the range of unstable region will become bigger as the bearing clearance increases. When the bearing preload increases, unstable region of the system will shift to the higher speed range. The higher the number of balls of bearings, the range of unstable region of the system will be smaller, and unstable region of the system will shift to the lower speed range.

    摘要 i 誌謝 vi 表目錄 ix 圖目錄 x 符號說明 xiii 第一章 緒論 1 1-1前言 1 1-2文獻回顧 3 1-3本文研究 5 第二章 非線性與混沌研究方法 6 2-1龐加萊截面(Poincaré Section)法 7 2-2頻譜分析 10 2-2-1離散傅立葉變換(DFT) 10 2-3吸引子(Attractor) 11 第三章 滾珠軸承轉子系統 13 3-1滾珠軸承幾何分析 13 3-2 赫茲接觸力 15 3-3滾珠軸承之恢復力 17 3-4運動方程式 18 第四章 數值模擬結果與討論 19 4-1時間步長的選擇 20 4-2程式驗證 21 4-3 不同轉速下非線性滾珠軸承轉子系統之動態響應 21 4-4 軸承間隙對系統之影響 23 4-5滾珠數量對系統之影響 24 4-6軸承垂直徑向預壓對系統之影響 25 第五章 結論 27 參考文獻 28

    [1]Lorenz, E. N., “Deterministic Non-Periodic Flow,” Journal of Atmospheric Science, Vol. 20, pp. 130-141, 1963.

    [2]Lorenz, E. N., Predictability: Does the Flap of a Butterfly's Wing in Brazil Set off a Tornado in Texas?, AAAS 139th Meeting, Washington, 1972.

    [3]Hertz, D., “On the Contact of Elastic Solids,” Journal Fur Die Rein Und Angewandte Mathematik, Vol. 98, pp. 593-600, 1881.

    [4]Sunnersjo, C. S., “Varing Compliance Vibrations of Rolling Bearing,” Journal of Sound and Vibration, Vol. 58, pp. 363-1188, 1978.

    [5]Fukata, S., Gad, E. H., Kondou, T., Ayabe, T., and Tamura, H., “On the Radial Vibration of Ball Bearings,” Bulletin of the JSME, Vol. 28, pp. 899-904, 1985.

    [6]Mevel, B., and Guyader, J. L., “Routes to Chaos in Ball Bearings,” Journal of Sound and Vibration, Vol. 162, pp. 471-487, 1993.

    [7]Sankaravelu, A., Noah, S. T., and Burger, C. P., “Bifurcation and Chaos in Ball Bearing,” Nonlinear and Stochastic Dynamics, Vol. 78, pp. 313-325, 1994.

    [8]Yamamoto, T., “On the Vibration of a Shaft Supported by Bearing Having Radial Clearances,” Transaction of the JSME, Vol. 21, pp. 182-192, 1955.

    [9]Childs, D. W., “Fractional-Frequency Rotor Motion due to Nonsymmetric Clearance Effects,” ASME Journal of Engineering Power, Vol. 104, pp. 533-536, 1982.

    [10]Saito, S., “Calculation of Nonlinear Unbalance Response of Horizontial Jeffcott Rotors Supported by Ball Bearing with Radial Clearances,” ASME Journal of Vibration, Acoustics, stress, and Reliability in design, Vol. 107, pp. 416-420, 1985.

    [11]Tiwari, M., Gupta, K., and Prakash, O., “Effect of Radial Internal Clearance of a Ball Bearing on the Dynamic of a Balanced Horizontal Rotor,” Journal of Sound and Vibration, Vol. 238, pp. 723-756, 2000.

    [12]Lee, A. C., Kang, Y., and Liu, S. L., “Steady-State Analysis of a Rotor Mounted on Nonlinear Bearing by the Transfer Matrix Method,” International Journal of Mechanical Science, Vol. 35, No. 6, pp. 479-490, 1993.

    [13]Zu, J. W., and Ji, Z., “An Improved Transfer Matrix Method for Steady-State Analysis of Nonlinear Rotor-Bearing system,” ASME Journal of Engineering for Gas Turbines and Power, Vol. 124, pp. 303-310, 2002.

    [14]Chang-Jian, C. W., and Chen, C. K., “Chaos and Bifurcation of a Flexible Rub-Impact Rotor Supported by Oil Film Bearings with Nonlinear Suspension,” Mechanism and Machine Theory, Vol. 42, pp. 312-333, 2007.

    [15]劉秉正,非線性動力學與混沌基礎,財團法人徐氏基金會,1998。

    [16]Oppenheim, A. V., and Schafer, R. W., Discrete-Time Signal Processing, Pearson Higher Education, 2010.

    [17]張簡才萬,轉子-軸承系統之非線性運動與混沌行為分析,國立成功大學機械工程學系博士論文,2006。

    [18]Harris, T. A., Rolling Bearing Analysis, John Wiley & sons, New York, 4th Ed, 2001.

    無法下載圖示 校內:立即公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE