簡易檢索 / 詳目顯示

研究生: 拉瓦告.沙里馬勞
Lavakau Thalimaraw
論文名稱: 番茄花發育早期在熱逆境下一新穎R2R3MYBS10-X轉錄因子
Identification of a novel R2R3MYBS10-X in Solanum lycopersicum under heat stress during the early stage of flower development
指導教授: 李瑞花
Lee, Ruey-Hua
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 熱帶植物與微生物科學研究所
Institute of Tropical Plant Sciences
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 82
中文關鍵詞: 黃酮素生合成花粉發育轉錄因子熱耐受性番茄
外文關鍵詞: flavonoids biosynthesis, pollen development, R2R3MYB transcription factor, thermotolerance, tomato
相關次數: 點閱:149下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 全球暖化帶來的地表層溫度上升在二十二世紀前預計達到攝氏1.8度。而番茄作為世界第二高產蔬菜作物其大多數產量卻僅源自北半球與溫帶地區。反映出嚴峻的氣溫對這項廣泛食用作物所帶來的巨大限制。我們藉由比對熱耐受性栽培種 (CLN1621L) 與熱敏感性栽培種 (CA4) 可以觀察到減數分裂和四倍體期的絨氈層(花葯內部營養層)與花粉細胞在CA4內提早死亡。這也造成其花粉在熱逆性下活性與發芽率降低。相對結果而言,CLN1621L保有更多具活性與發芽能力的花粉進入授粉階段。轉錄體分析也顯示花發育早期階段CLN1621L較為集中表現與耐熱性相關的基因富集而CA4傾向廣泛性表現基因。因此我們透過篩選CLN1621L早期顯著性熱誘導的基因和RNA-seq結果來建構共表現網路。在此關係網中,揭示了在熱逆境下,對絨氈層功能和花粉發育相關的 MYBs (例如AtTDF1-like, AtTDF1-like2, AtTDF1-like) 和 bHLH (例如 ms32, ms10, AtAMS-like) 轉錄因子於CLN1621L花發育早期能保有較高的表現量。qRT-PCR結果證實這些必要基因的穩定表現僅在CLN1621L被觀察到。根據共表現網路和RNA-seq的疊加分析,我們認為苯丙烷和黃酮素生合成路徑在絨氈層功能和花粉發育扮演著重要角色。我們也透過親緣性分析和qRT-PCR發現一新穎R2R3MYB轉錄因子,R2R3MYBS10-X (Solyc12g049300),具有調控黃酮素生合成基因如FLS的潛能。目前對R2R3MYB轉錄因子的認知不僅是在調控初級及次級代謝也包括植物生物性及非生物性逆境的抗性。未來研究將著重在探討此轉錄因子在花發育早期階段調控苯丙烷和黃酮素生合成對番茄耐熱性的影響。此研究也架構此基因過表現與CRISPR/Cas9 基因剔除載體和轉殖方法用於驗證R2R3MYBS10-X對植物熱耐受性的幫助。

    The effect of Global warming keeps contributing the increasing surface temperature which is expected to over 1.8 ℃ by twenty-second century. Even tomato is the second most important vegetable crop worldwide, most of the production come from northern hemisphere and temperature zone. It implies one of the huge limits for this popular crop is its sensitiveness to the adverse heat. By comparing a heat tolerant cultivar (CLN1621L) and a heat sensitive cultivar (CA4), we observed pollen cell death and pre-mature death of tapetal cells at meiosis and tetrad stages in CA4. This contributes to low pollen viability and germination rate under heat stress. In contrast, CLN1621L held higher portion in available pollens to fertilization. Transcriptomic analysis showed GO terms related to thermotolerance in CLN1621L during early stage but CA4 tended to extensively expression pattern. Significantly heat-induced genes during entire early events were extracted and constructed co-expression network overlapping with RNA-seq. We revealed some MYBs (e.g. AtTDF1-like, AtTDF1-like2, AtTDF1-like) and bHLH (e.g. ms32 and ms1035, AtAMS-like) transcription factors important for tapetum function and pollen development were able to maintain high levels of expression in CLN1621L during SI-SIII stages of flower development. qRT-PCR results validated stable expression of necessary genes only in CLN1621L. Based on results of overlapping analysis, we hypothesize synthesis of phenylpropanoid and flavonoid might play important role in tapetum function and pollen development under heat stress. We have also identified a novel R2R3MYB transcription factor, R2R3MYBS10-X (solyc12g049300) with potential regulation on late biosynthesis genes such as FLS by phylogenetic and qPCR analysis. R2R3MYB transcription factors are known not only involving in primary and secondary metabolism but also in abiotic and biotic stress tolerance. Future study will explore its function in thermotolerance by regulating phenylalanine and flavonoids biosynthesis during early stages of flower development. Over-expression and CRISPR/Cas9 gene knockout transgenic construct will be used to validate the function of this R2R3MYB transcription factor in thermotolerance.

    ABSTRACT i 摘要 ii ACKNOWLEDGEMENT iii CONTENT iv FIGURE LIST vi 1. INTRODUCTION 1 1.1. Tomato and its production under global warming 1 1.2. Physiological effects on tomato plants under heat stress 2 1.3. Male gamete development 3 1.4. Male fertility under HS 3 1.5. Molecular mechanisms of heat stress response and thermotolerance 4 1.6. Transcriptomic studies reveal differential expression genes related to thermotolerance 5 1.7. CRISPR/Cas9 gene editing for reverse genetics in gene functional study 6 1.8. MYB transcription factors and its role to stress response 7 1.9 Phenylpropanoids and flavonoids biosynthesis towards enhanced reproductive thermotolerance 8 1.10. Tomato thermotolerance and food security 9 1.11. Research aim 10 2. METHOD AND MATERIAL 11 2.1. Plant materials 11 2.2. Pollen numbers, viability, and germination test 11 2.3. Total RNA isolation and sequencing 11 2.4. RNA-seq read mapping and transcript profiling 12 2.5. Acquisition of heat-induced/suppressed genes and statistic overrepresentation test 12 2.6. R2R3MYBs phylogenetic tree in tomato 13 2.7. Co-expression analysis of potentially heat-induced genes during early stage 14 2.8. DNA extraction 14 2.9. Coding sequences alignment of R2R3MYBS10-X 15 2.10. Quantitative Reverse Transcription PCR (RT-qPCR) and semi-quantitative Reverse Transcription PCR (semi-qPCR) 15 2.11. SlMYB54 target analysis of CRISPR/Cas9 gene knockout 16 2.12. Overexpression R2R3MYBS10-X construct 17 2.13. Agrobacterium-mediated transformation and genotyping 18 3. RESULTS 21 3.1. CLN1621L maintained viable and germinated pollen numbers under heat stress 21 3.2. RNA-seq revealed potentially heat-induced and heat-suppressed genes 21 3.3. Statistic overrepresentation test showed the discrepancy of gene expression between CLN1621L and CA4 under heat stress 22 3.4. Co-expression analysis revealed interaction between pollen development with phenylpropanoid and flavonoid biosynthesis 22 3.5. Genes in transcription cascade of pollen development and tapetum-function kept stable in CLN1621L 23 3.6. qPCR analysis showed R2R3MYBS10-X as regulator of FLS 23 3.7. Cis-acting binding analysis MYB related elements on structure genes 24 3.8. Phylogenetic tree of R2R3MYBs in tomato 25 3.9. Alignment of coding sequences in R2R3MYBS10-X between CLN1621L and CA4 25 3.10. Heat shock response genes expressed much stable in CLN1621L under heat stress 26 3.11. Finishing transformation of CRISPR-Cas9 gene knockout construct into Microtom tomato 26 4. DISCUSSION 28 5. CONCLUSION 33 6. REFERENCES 34 7. FIGURES 49 8. APPENDIX 79

    Abiko, M., Akibayashi, K., Sakata, T., Kimura, M., Kihara, M., Itoh, K., Asamizu, E., Sato, S., Takahashi, H., & Higashitani, A. High-temperature induction of male sterility during barley (Hordeum vulgare L.) anther development is mediated by transcriptional inhibition. Sexual Plant Reproduction, 18(2), 91-100, 2005.
    Ahmed, F. E., Hall, A. E., & DeMason, D. A. Heat injury during floral development in cowpea (Vigna unguiculata, Fabaceae). American Journal of Botany, 79(7), 784-791, 1992.
    Albert, N. W., Davies, K. M., Lewis, D. H., Zhang, H., Montefiori, M., Brendolise, C., Boase, M. R., Ngo, H., Jameson, P. E., & Schwinn, K. E. A Conserved Network of Transcriptional Activators and Repressors Regulates Anthocyanin Pigmentation in Eudicots. The Plant Cell, 26(3), 962-980, 2014.
    Ali, A., Wu, T., Zhang, H., Xu, P., Zafar, S. A., Liao, Y., Chen, X., Zhou, H., Liu, Y., & Wang, W. A putative SUBTILISIN-LIKE SERINE PROTEASE 1 (SUBSrP1) regulates anther cuticle biosynthesis and panicle development in rice. Journal of Advanced Research, 2022.
    Allan, A. C., Hellens, R. P., & Laing, W. A. MYB transcription factors that colour our fruit. Trends Plant Sci, 13(3), 99-102, 2008.
    Alsamir, M., Ahmad, N., Arief, V., Mahmood, T., & Trethowan, R. Phenotypic diversity and marker-trait association studies under heat stress in tomato (Solanum lycopersicum L.). Australian Journal of Crop Science, 13(4), 578-587, 2019.
    Alsamir, M., Mahmood, T., Trethowan, R., & Ahmad, N. An overview of heat stress in tomato (Solanum lycopersicum L.). Saudi Journal of Biological Sciences, 28(3), 1654-1663, 2021.
    Andersson, M., Turesson, H., Olsson, N., Fält, A.-S., Ohlsson, P., Gonzalez, M. N., Samuelsson, M., & Hofvander, P. Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery. Physiologia Plantarum, 164(4), 378-384, 2018.
    Arce, D., Spetale, F., Krsticevic, F., Cacchiarelli, P., Rivas, L., De, J., Ponce, S., Pratta, G., & Tapia, E. Regulatory motifs found in the small heat shock protein (sHSP) gene family in tomato. BMC genomics, 19(8), 1-7, 2018.
    Bae, S., Park, J., & Kim, J.-S. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. bioinformatics, 30(10), 1473-1475, 2014.
    Ballester, A.-R., Molthoff, J., de Vos, R., Hekkert, B. t. L., Orzaez, D., Fernaݩndez-Moreno, J.-P., Tripodi, P., Grandillo, S., Martin, C., Heldens, J., Ykema, M., Granell, A., & Bovy, A. Biochemical and Molecular Analysis of Pink Tomatoes: Deregulated Expression of the Gene Encoding Transcription Factor SlMYB12 Leads to Pink Tomato Fruit Color. Plant Physiology, 152(1), 71-84, 2009.
    Balyan, S., Rao, S., Jha, S., Bansal, C., Das, J. R., & Mathur, S. Characterization of novel regulators for heat stress tolerance in tomato from Indian sub‐continent. Plant Biotechnology Journal, 18(10), 2118-2132, 2020.
    Barrangou, R., & Doudna, J. A. Applications of CRISPR technologies in research and beyond. Nature biotechnology, 34(9), 933-941, 2016.
    Baxter, A., Mittler, R., & Suzuki, N. ROS as key players in plant stress signalling. Journal of experimental botany, 65(5), 1229-1240, 2014.
    Beecher, G. R. Nutrient content of tomatoes and tomato products. Proceedings of the Society for Experimental Biology and Medicine, 218(2), 98-100, 1998.
    Begcy, K., Nosenko, T., Zhou, L.-Z., Fragner, L., Weckwerth, W., & Dresselhaus, T. Male sterility in maize after transient heat stress during the tetrad stage of pollen development. Plant Physiology, 181(2), 683-700, 2019.
    Benton Jones, J., Jr. A Review of: “Tomato Plant Culture: In the Field, Greenhouse, and Home Garden” 2nd ed. CRC Press. Boca Raton, Florida, US. 2008
    Bharti, K., von Koskull-Döring, P., Bharti, S., Kumar, P., Tintschl-Körbitzer, A., Treuter, E., & Nover, L. Tomato heat stress transcription factor HsfB1 represents a novel type of general transcription coactivator with a histone-like motif interacting with the plant CREB binding protein ortholog HAC1. The Plant Cell, 16(6), 1521-1535, 2004.
    Bita, C. E., Zenoni, S., Vriezen, W. H., Mariani, C., Pezzotti, M., & Gerats, T. Temperature stress differentially modulates transcription in meiotic anthers of heat-tolerant and heat-sensitive tomato plants. BMC genomics, 12(1), 1-18, 2011.
    Bita, C. E., & Gerats, T. Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci, 4, 273, 2013.
    Bita, E. Heat stress tolerance responses in developing tomato anthers. Wageningen University. 2016.
    Bokvaj, P., Hafidh, S., & Honys, D. Transcriptome profiling of male gametophyte development in Nicotiana tabacum. Genomics data, 3, 106-111, 2015.
    Borg, M., Brownfield, L., & Twell, D. Male gametophyte development: a molecular perspective. Journal of experimental botany, 60(5), 1465-1478, 2009.
    Butt, H., Jamil, M., Wang, J. Y., Al-Babili, S., & Mahfouz, M. Engineering plant architecture via CRISPR/Cas9-mediated alteration of strigolactone biosynthesis. BMC plant biology, 18(1), 174, 2018.
    Cao, X., Qiu, Z., Wang, X., Van Giang, T., Liu, X., Wang, J., Wang, X., Gao, J., Guo, Y., & Du, Y. A putative R3 MYB repressor is the candidate gene underlying atroviolacium, a locus for anthocyanin pigmentation in tomato fruit. Journal of experimental botany, 68(21-22), 5745-5758, 2017.
    Chaban, I. A., Kononenko, N. V., Gulevich, A. A., Bogoutdinova, L. R., Khaliluev, M. R., & Baranova, E. N. Morphological features of the anther development in tomato plants with non-specific male sterility. Biology, 9(2), 32, 2020.
    Chaturvedi, P., Wiese, A. J., Ghatak, A., Zaveska Drabkova, L., Weckwerth, W., & Honys, D. Heat stress response mechanisms in pollen development. New Phytologist, 231(2), 571-585, 2021.
    Chen, K.-Y., Cong, B., Wing, R., Vrebalov, J., & Tanksley, S. D. Changes in regulation of a transcription factor lead to autogamy in cultivated tomatoes. Science, 318(5850), 643-645, 2007.
    Chen, L., & Liu, Y. G. Male sterility and fertility restoration in crops. Annu Rev Plant Biol, 65, 579-606, 2014.
    Chen, Y., Kim, P., Kong, L., Wang, X., Tan, W., Liu, X., Chen, Y., Yang, J., Chen, B., & Song, Y. A dual-function transcription factor SlJAF13 promotes anthocyanin biosynthesis in tomato. Journal of experimental botany, 2022.
    Choudhary, R., Bowser, T., Weckler, P., Maness, N., & McGlynn, W. Rapid estimation of lycopene concentration in watermelon and tomato puree by fiber optic visible reflectance spectroscopy. Postharvest Biology and Technology, 52(1), 103-109, 2009.
    Coberly, L., & Rausher, M. Analysis of a chalcone synthase mutant in Ipomoea purpurea reveals a novel function for flavonoids: amelioration of heat stress. Molecular Ecology, 12(5), 1113-1124, 2003.
    Cominelli, E., & Tonelli, C. A new role for plant R2R3-MYB transcription factors in cell cycle regulation. Cell Res, 19(11), 1231-1232, 2009.
    Cui, P., & Xiong, L. Environmental stress and pre-mRNA splicing. Molecular Plant, 8(9), 1302-1303, 2015.
    Das, K., & Roychoudhury, A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in environmental science, 2, 53, 2014.
    Deng, Y., & Lu, S. Biosynthesis and regulation of phenylpropanoids in plants. Critical Reviews in Plant Sciences, 36, 1-34, 2017.
    Deveshwar, P., Bovill, W. D., Sharma, R., Able, J. A., & Kapoor, S. Analysis of anther transcriptomes to identify genes contributing to meiosis and male gametophyte development in rice. BMC plant biology, 11(1), 1-20, 2011.
    Djanaguiraman, M., Prasad, P. V., Boyle, D., & Schapaugh, W. Soybean pollen anatomy, viability and pod set under high temperature stress. Journal of Agronomy and Crop Science, 199(3), 171-177, 2013.
    Djanaguiraman, M., Schapaugh, W., Fritschi, F., Nguyen, H., & Prasad, P. V. Reproductive success of soybean (Glycine max L. Merril) cultivars and exotic lines under high daytime temperature. Plant, cell & environment, 42(1), 321-336, 2019.
    Dong, N.-Q., & Lin, H.-X. Contribution of phenylpropanoid metabolism to plant development and plant–environment interactions. Journal of integrative plant biology, 63(1), 180-209, 2021.
    Driedonks, N., Xu, J., Peters, J. L., Park, S., & Rieu, I. Multi-level interactions between heat shock factors, heat shock proteins, and the redox system regulate acclimation to heat. Frontiers in Plant Science, 6, 999, 2015.
    Dubos, C., Stracke, R., Grotewold, E., Weisshaar, B., Martin, C., & Lepiniec, L. MYB transcription factors in Arabidopsis. Trends Plant Sci, 15(10), 573-581, 2010.
    Dukowic-Schulze, S., Sundararajan, A., Mudge, J., Ramaraj, T., Farmer, A. D., Wang, M., Sun, Q., Pillardy, J., Kianian, S., & Retzel, E. F. The transcriptome landscape of early maize meiosis. BMC plant biology, 14(1), 1-15, 2014.
    Dupuis, I., & Dumas, C. Influence of temperature stress on in vitro fertilization and heat shock protein synthesis in maize (Zea mays L.) reproductive tissues. Plant Physiology, 94(2), 665-670, 1990.
    El-Mounadi, K., Morales-Floriano, M. L., & Garcia-Ruiz, H. Principles, Applications, and Biosafety of Plant Genome Editing Using CRISPR-Cas9. Front Plant Sci, 11, 56, 2020.
    El-Shershaby, A., Ullrich, S., Simm, S., Scharf, K.-D., Schleiff, E., & Fragkostefanakis, S. Functional diversification of tomato HsfA1 factors is based on DNA binding domain properties. Gene, 714, 143985, 2019.
    Endo, M., Tsuchiya, T., Hamada, K., Kawamura, S., Yano, K., Ohshima, M., Higashitani, A., Watanabe, M., & Kawagishi-Kobayashi, M. High temperatures cause male sterility in rice plants with transcriptional alterations during pollen development. Plant and Cell Physiology, 50(11), 1911-1922, 2009.
    Erickson, A., & Markhart, A. Flower developmental stage and organ sensitivity of bell pepper (Capsicum annuum L.) to elevated temperature. Plant, cell & environment, 25(1), 123-130, 2002.
    Feller, A., Machemer, K., Braun, E. L., & Grotewold, E. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. The Plant Journal, 66(1), 94-116, 2011.
    Fernandez-Moreno, J. P., Tzfadia, O., Forment, J., Presa, S., Rogachev, I., Meir, S., Orzaez, D., Aharoni, A., & Granell, A. Characterization of a new pink-fruited tomato mutant results in the identification of a null allele of the SlMYB12 transcription factor. Plant Physiol, 171(3), 1821-1836, 2016.
    Firon, N., Shaked, R., Peet, M., Pharr, D., Zamski, E., Rosenfeld, K., Althan, L., & Pressman, E. Pollen grains of heat tolerant tomato cultivars retain higher carbohydrate concentration under heat stress conditions. Scientia Horticulturae, 109(3), 212-217, 2006.
    Firon, N., Pressman, E., Meir, S., Khoury, R., & Altahan, L. Ethylene is involved in maintaining tomato (Solanum lycopersicum) pollen quality under heat-stress conditions. AoB plants, 2012, 2012.
    Flórez-Zapata, N. M., Reyes-Valdés, M., Hernandez-Godínez, F., & Martínez, O. Transcriptomic landscape of prophase I sunflower male meiocytes. Frontiers in Plant Science, 5, 277, 2014.
    Fragkostefanakis, S., Mesihovic, A., Simm, S., Paupière, M. J., Hu, Y., Paul, P., Mishra, S. K., Tschiersch, B., Theres, K., & Bovy, A. HsfA2 controls the activity of developmentally and stress-regulated heat stress protection mechanisms in tomato male reproductive tissues. Plant Physiology, 170(4), 2461-2477, 2016a.
    Fragkostefanakis, S., Mesihovic, A., Hu, Y., & Schleiff, E. Unfolded protein response in pollen development and heat stress tolerance. Plant Reproduction, 29(1), 81-91, 2016b.
    Gates, D. J., Strickler, S. R., Mueller, L. A., Olson, B. J. S. C., & Smith, S. D. Diversification of R2R3-MYB Transcription Factors in the Tomato Family Solanaceae. Journal of Molecular Evolution, 83(1), 26-37, 2016.
    Giorno, F., Wolters-Arts, M., Mariani, C., & Rieu, I. Ensuring reproduction at high temperatures: the heat stress response during anther and pollen development. Plants, 2(3), 489-506, 2013.
    Giovannucci, E., Rimm, E. B., Liu, Y., Stampfer, M. J., & Willett, W. C. A prospective study of tomato products, lycopene, and prostate cancer risk. Journal of the National Cancer Institute, 94(5), 391-398, 2002.
    Goldberg, R. B., Beals, T. P., & Sanders, P. M. Anther development: basic principles and practical applications. The Plant Cell, 5(10), 1217, 1993.
    Gómez, J. F., Talle, B., & Wilson, Z. A. Anther and pollen development: a conserved developmental pathway. Journal of integrative plant biology, 57(11), 876-891, 2015.
    González-Schain, N., Dreni, L., Lawas, L. M., Galbiati, M., Colombo, L., Heuer, S., Jagadish, K. S., & Kater, M. M. Genome-wide transcriptome analysis during anthesis reveals new insights into the molecular basis of heat stress responses in tolerant and sensitive rice varieties. Plant and Cell Physiology, 57(1), 57-68, 2016.
    Gonzalo, M. J., Nájera, I., Baixauli, C., Gil, D., Montoro, T., Soriano, V., Olivieri, F., Rigano, M. M., Ganeva, D., & Grozeva-Tileva, S. Identification of tomato accessions as source of new genes for improving heat tolerance: From controlled experiments to field. BMC plant biology, 21(1), 1-28, 2021.
    Guan, Q., Lu, X., Zeng, H., Zhang, Y., & Zhu, J. Heat stress induction of miR398 triggers a regulatory loop that is critical for thermotolerance in A rabidopsis. The Plant Journal, 74(5), 840-851, 2013.
    Hale, B., Phipps, C., Rao, N., Wijeratne, A., & Phillips, G. C. Differential expression profiling reveals stress-induced cell fate divergence in soybean microspores. Plants, 9(11), 1510, 2020.
    Harsant, J., Pavlovic, L., Chiu, G., Sultmanis, S., & Sage, T. L. High temperature stress and its effect on pollen development and morphological components of harvest index in the C3 model grass Brachypodium distachyon. Journal of experimental botany, 64(10), 2971-2983, 2013.
    Hashimoto, R., Ueta, R., Abe, C., Osakabe, Y., & Osakabe, K. Efficient multiplex genome editing induces precise, and self-ligated type mutations in tomato plants. Frontiers in Plant Science, 9, 2018.
    He, J., Jiang, Z., Gao, L., You, C., Ma, X., Wang, X., Xu, X., Mo, B., Chen, X., & Liu, L. Genome-wide transcript and small RNA profiling reveals transcriptomic responses to heat stress. Plant Physiology, 181(2), 609-629, 2019.
    Higginson, T., Li, S. F., & Parish, R. W. AtMYB103 regulates tapetum and trichome development in Arabidopsis thaliana. The Plant Journal, 35(2), 177-192, 2003.
    Hoshikawa, K., Pham, D., Ezura, H., Schafleitner, R., & Nakashima, K. Genetic and molecular mechanisms conferring heat stress tolerance in tomato plants. Frontiers in Plant Science, 12, 2021.
    Hsieh, K., & Huang, A. H. Tapetosomes in Brassica tapetum accumulate endoplasmic reticulum–derived flavonoids and alkanes for delivery to the pollen surface. The Plant Cell, 19(2), 582-596, 2007.
    Huang, Y.-C., Niu, C.-Y., Yang, C.-R., & Jinn, T.-L. The heat stress factor HSFA6b connects ABA signaling and ABA-mediated heat responses. Plant Physiology, 172(2), 1182-1199, 2016.
    Ikeda, M., Mitsuda, N., & Ohme-Takagi, M. Arabidopsis HsfB1 and HsfB2b act as repressors of the expression of heat-inducible Hsfs but positively regulate the acquired thermotolerance. Plant Physiology, 157(3), 1243-1254, 2011.
    Iovane, M., & Aronne, G. High temperatures during microsporogenesis fatally shorten pollen lifespan. Plant Reproduction, 35(1), 9-17, 2022.
    Jagadish, S. K. Heat stress during flowering in cereals–effects and adaptation strategies. New Phytologist, 226(6), 1567-1572, 2020.
    Jeong, H.-J., Kang, J.-H., Zhao, M., Kwon, J.-K., Choi, H.-S., Bae, J. H., Lee, H.-a., Joung, Y.-H., Choi, D., & Kang, B.-C. Tomato Male sterile 1035 is essential for pollen development and meiosis in anthers. Journal of experimental botany, 65(22), 6693-6709, 2014.
    Jia, Y., Ding, Y., Shi, Y., Zhang, X., Gong, Z., & Yang, S. The cbfs triple mutants reveal the essential functions of CBFs in cold acclimation and allow the definition of CBF regulons in Arabidopsis. New Phytologist, 212(2), 345-353, 2016.
    Jian, W., Cao, H., Yuan, S., Liu, Y., Lu, J., Lu, W., Li, N., Wang, J., Zou, J., Tang, N., Xu, C., Cheng, Y., Gao, Y., Xi, W., Bouzayen, M., & Li, Z. SlMYB75, an MYB-type transcription factor, promotes anthocyanin accumulation and enhances volatile aroma production in tomato fruits. Horticulture Research, 6, 2019.
    Katiyar, A., Smita, S., Lenka, S. K., Rajwanshi, R., Chinnusamy, V., & Bansal, K. C. Genome-wide classification and expression analysis of MYB transcription factor families in rice and Arabidopsis. BMC genomics, 13(1), 544, 2012.
    Kawanabe, T., Ariizumi, T., Kawai-Yamada, M., Uchimiya, H., & Toriyama, K. Abolition of the tapetum suicide program ruins microsporogenesis. Plant and Cell Physiology, 47(6), 784-787, 2006.
    Keller, M., Schleiff, E., & Simm, S. miRNAs involved in transcriptome remodeling during pollen development and heat stress response in Solanum lycopersicum. Scientific reports, 10(1), 1-13, 2020.
    Khan, A. H., Min, L., Ma, Y., Wu, Y., Ding, Y., Li, Y., Xie, S., Ullah, A., Shaban, M., & Manghwar, H. High day and night temperatures distinctively disrupt fatty acid and jasmonic acid metabolism, inducing male sterility in cotton. Journal of experimental botany, 71(19), 6128-6141, 2020.
    Kiferle, C., Fantini, E., Bassolino, L., Povero, G., Spelt, C., Buti, S., Giuliano, G., Quattrocchio, F., Koes, R., Perata, P., & Gonzali, S. Tomato R2R3-MYB Proteins SlANT1 and SlAN2: Same Protein Activity, Different Roles. PLoS One, 10(8), e0136365, 2015.
    Kranz, H., Scholz, K., & Weisshaar, B. c-MYB oncogene-like genes encoding three MYB repeats occur in all major plant lineages. The Plant Journal, 21(2), 231-235, 2000.
    Kumar, S., Rymarquis, L. A., Ezura, H., & Nekrasov, V. Editorial: CRISPR-Cas in Agriculture: Opportunities and Challenges. Frontiers in Plant Science, 12, 2021.
    Labuhn, M., Adams, F. F., Ng, M., Knoess, S., Schambach, A., Charpentier, E. M., Schwarzer, A., Mateo, J. L., Klusmann, J.-H., & Heckl, D. Refined sgRNA efficacy prediction improves large-and small-scale CRISPR–Cas9 applications. Nucleic acids research, 46(3), 1375-1385, 2018.
    Lamers, J., Van Der Meer, T., & Testerink, C. How plants sense and respond to stressful environments. Plant Physiology, 182(4), 1624-1635, 2020.
    Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., & Lopez, R. Clustal W and Clustal X version 2.0. bioinformatics, 23(21), 2947-2948, 2007.
    Lin, J.-S., Kuo, C.-C., Yang, I.-C., Tsai, W.-A., Shen, Y.-H., Lin, C.-C., Liang, Y.-C., Li, Y.-C., Kuo, Y.-W., & King, Y.-C. MicroRNA160 modulates plant development and heat shock protein gene expression to mediate heat tolerance in Arabidopsis. Frontiers in Plant Science, 9, 68, 2018.
    Liu, J., Osbourn, A., & Ma, P. MYB transcription factors as regulators of phenylpropanoid metabolism in plants. Mol Plant, 8(5), 689-708, 2015.
    Liu, C., Zhang, Y., Tan, Y., Zhao, T., Xu, X., Yang, H., & Li, J. CRISPR/Cas9-Mediated SlMYBS2 mutagenesis reduces tomato resistance to Phytophthora infestans. Int J Mol Sci, 22(21), 2021.
    Liu, M., Zhang, Z., Xu, Z., Wang, L., Chen, C., & Ren, Z. Overexpression of SlMYB75 enhances resistance to Botrytis cinerea and prolongs fruit storage life in tomato. Plant Cell Rep, 40(1), 43-58, 2021.
    Lloyd, A., Brockman, A., Aguirre, L., Campbell, A., Bean, A., Cantero, A., & Gonzalez, A. Advances in the MYB–bHLH–WD repeat (MBW) pigment regulatory model: addition of a WRKY factor and co-option of an anthocyanin MYB for betalain regulation. Plant and Cell Physiology, 58(9), 1431-1441, 2017.
    Lohani, N., Singh, M. B., & Bhalla, P. L. High temperature susceptibility of sexual reproduction in crop plants. Journal of experimental botany, 71(2), 555-568, 2020.
    Luria, G., Rutley, N., Lazar, I., Harper, J. F., & Miller, G. Direct analysis of pollen fitness by flow cytometry: implications for pollen response to stress. The Plant Journal, 98(5), 942-952, 2019.
    Ma, D., & Constabel, C. P. MYB repressors as regulators of phenylpropanoid metabolism in plants. Trends Plant Sci, 24(3), 275-289, 2019.
    Makarova, K. S., Wolf, Y. I., Iranzo, J., Shmakov, S. A., Alkhnbashi, O. S., Brouns, S. J., Charpentier, E., Cheng, D., Haft, D. H., & Horvath, P. Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nature Reviews Microbiology, 18(2), 67-83, 2020.
    Mareri, L., Faleri, C., Aloisi, I., Parrotta, L., Del Duca, S., & Cai, G. Insights into the mechanisms of heat priming and thermotolerance in tobacco Pollen. International Journal of Molecular Sciences, 22(16), 8535, 2021.
    Masoomi‐Aladizgeh, F., Najeeb, U., Hamzelou, S., Pascovici, D., Amirkhani, A., Tan, D. K., Mirzaei, M., Haynes, P. A., & Atwell, B. J. Pollen development in cotton (Gossypium hirsutum) is highly sensitive to heat exposure during the tetrad stage. Plant, cell & environment, 44(7), 2150-2166, 2021.
    Masoomi‐Aladizgeh, F., McKay, M. J., Asar, Y., Haynes, P. A., & Atwell, B. J. Patterns of gene expression in pollen of cotton (Gossypium hirsutum) indicate downregulation as a feature of thermotolerance. The Plant Journal, 109(4), 965-979, 2022.
    Mathews, H., Clendennen, S. K., Caldwell, C. G., Liu, X. L., Connors, K., Matheis, N., Schuster, D. K., Menasco, D. J., Wagoner, W., Lightner, J., & Wagner, D. R. Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport. The Plant Cell, 15(8), 1689-1703, 2003.
    McClung, C. R., & Davis, S. J. Ambient thermometers in plants: from physiological outputs towards mechanisms of thermal sensing. Current Biology, 20(24), R1086-R1092, 2010.
    Meng, X., Wang, J.-R., Wang, G.-D., Liang, X.-Q., Li, X.-D., & Meng, Q.-W. An R2R3-MYB gene, LeAN2, positively regulated the thermo-tolerance in transgenic tomato. Journal of Plant Physiology, 175, 1-8, 2015.
    Mittler, R., Finka, A., & Goloubinoff, P. How do plants feel the heat? Trends in biochemical sciences, 37(3), 118-125, 2012.
    Muhlemann, J. K., Younts, T. L. B., & Muday, G. K. Flavonols control pollen tube growth and integrity by regulating ROS homeostasis during high-temperature stress. Proceedings of the National Academy of Sciences, 115(47), E11188-E11197, 2018.
    Müller, F., & Rieu, I. Acclimation to high temperature during pollen development. Plant Reproduction, 29(1), 107-118, 2016.
    Müller, F., Xu, J., Kristensen, L., Wolters-Arts, M., de Groot, P. F., Jansma, S. Y., Mariani, C., Park, S., & Rieu, I. High-temperature-induced defects in tomato (Solanum lycopersicum) anther and pollen development are associated with reduced expression of B-class floral patterning genes. PLoS One, 11(12), e0167614, 2016.
    Nakabayashi, R., Yonekura-Sakakibara, K., Urano, K., Suzuki, M., Yamada, Y., Nishizawa, T., Matsuda, F., Kojima, M., Sakakibara, H., Shinozaki, K., Michael, A. J., Tohge, T., Yamazaki, M., & Saito, K. Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids. Plant J, 77(3), 367-379, 2014.
    Nekrasov, V., Wang, C., Win, J., Lanz, C., Weigel, D., & Kamoun, S. Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Scientific reports, 7(1), 482, 2017.
    Nonaka, S., Arai, C., Takayama, M., Matsukura, C., & Ezura, H. Efficient increase of ɣ-aminobutyric acid (GABA) content in tomato fruits by targeted mutagenesis. Scientific reports, 7(1), 7057, 2017.
    Osakabe, Y., & Osakabe, K. Genome editing with engineered nucleases in plants. Plant and Cell Physiology, 56(3), 389-400, 2015.
    Oshino, T., Abiko, M., Saito, R., Ichiishi, E., Endo, M., Kawagishi-Kobayashi, M., & Higashitani, A. Premature progression of anther early developmental programs accompanied by comprehensive alterations in transcription during high-temperature injury in barley plants. Molecular Genetics and Genomics, 278(1), 31-42, 2007.
    Owens, D. K., Alerding, A. B., Crosby, K. C., Bandara, A. B., Westwood, J. H., & Winkel, B. S. Functional analysis of a predicted flavonol synthase gene family in Arabidopsis. Plant Physiology, 147(3), 1046-1061, 2008.
    Pacini, E., & Dolferus, R. Pollen developmental arrest: maintaining pollen fertility in a world with a changing climate. Frontiers in Plant Science, 679, 2019.
    Pan, C., Yang, D., Zhao, X., Jiao, C., Yan, Y., Lamin‐Samu, A. T., Wang, Q., Xu, X., Fei, Z., & Lu, G. Tomato stigma exsertion induced by high temperature is associated with the jasmonate signalling pathway. Plant, cell & environment, 42(4), 1205-1221, 2019.
    Park, S. H., Morris, J. L., Park, J. E., Hirschi, K. D., & Smith, R. H. Efficient and genotype-independent Agrobacterium-mediated tomato transformation. Journal of Plant Physiology, 160(10), 1253-1257, 2003.
    Park, C.-J., & Seo, Y.-S. Heat shock proteins: a review of the molecular chaperones for plant immunity. The plant pathology journal, 31(4), 323, 2015.
    Peet, M., Sato, S., & Gardner, R. Comparing heat stress effects on male‐fertile and male‐sterile tomatoes. Plant, cell & environment, 21(2), 225-231, 1998.
    Peixoto, J., Neto, C., Campos, L., Dourado, W., Nogueira, A., & Nascimento, A. Industrial tomato lines: morphological properties and productivity. Genet. Mol. Res, 16(2), 1-15, 2017.
    Poór, P., Nawaz, K., Gupta, R., Ashfaque, F., & Khan, M. I. R. Ethylene involvement in the regulation of heat stress tolerance in plants. Plant Cell Reports, 1-24, 2021.
    Porch, T., & Jahn, M. Effects of high‐temperature stress on microsporogenesis in heat‐sensitive and heat‐tolerant genotypes of Phaseolus vulgaris. Plant, cell & environment, 24(7), 723-731, 2001.
    Pressman, E., Peet, M. M., & Pharr, D. M. The effect of heat stress on tomato pollen characteristics is associated with changes in carbohydrate concentration in the developing anthers. Annals of botany, 90(5), 631-636, 2002.
    Pucker, B., Reiher, F., & Schilbert, H. M. Automatic Identification of Players in the Flavonoid Biosynthesis with Application on the Biomedicinal Plant Croton tiglium. Plants, 9(9), 1103, 2020.
    Qiu, Z., Wang, H., Li, D., Yu, B., Hui, Q., Yan, S., Huang, Z., Cui, X., & Cao, B. Identification of candidate HY5-dependent and-independent regulators of anthocyanin biosynthesis in tomato. Plant and Cell Physiology, 60(3), 643-656, 2019.
    Rahmati Ishka, M., Brown, E., Weigand, C., Tillett, R. L., Schlauch, K. A., Miller, G., & Harper, J. F. A comparison of heat-stress transcriptome changes between wild-type Arabidopsis pollen and a heat-sensitive mutant harboring a knockout of cyclic nucleotide-gated cation channel 16 (cngc16). BMC genomics, 19(1), 1-19, 2018.
    Rajametov, S. N., Yang, E. Y., Jeong, H. B., Cho, M. C., Chae, S. Y., & Paudel, N. Heat treatment in two tomato cultivars: A study of the effect on physiological and growth recovery. Horticulturae, 7(5), 119, 2021.
    Reeves, P. H., & Coupland, G. Response of plant development to environment: control of flowering by daylength and temperature. Current opinion in plant biology, 3(1), 37-42, 2000.
    Rezaul, I. M., Baohua, F., Tingting, C., Weimeng, F., Caixia, Z., Longxing, T., & Guanfu, F. Abscisic acid prevents pollen abortion under high‐temperature stress by mediating sugar metabolism in rice spikelets. Physiologia Plantarum, 165(3), 644-663, 2019.
    Rieu, I., Twell, D., & Firon, N. Pollen development at high temperature: from acclimation to collapse. Plant Physiology, 173(4), 1967-1976, 2017.
    Rijpkema, A. S., Vandenbussche, M., Koes, R., Heijmans, K., & Gerats, T. (2010). Variations on a theme: changes in the floral ABCs in angiosperms. Seminars in cell & developmental biology,
    Rodrigues, J. A., Espley, R. V., & Allan, A. C. Genomic analysis uncovers functional variation in the C-terminus of anthocyanin-activating MYB transcription factors. Horticulture Research, 8, 2021.
    Rutley, N., Miller, G., Wang, F., Harper, J. F., Miller, G., & Lieberman-Lazarovich, M. Enhanced reproductive thermotolerance of the tomato high pigment 2 mutant is associated with increased accumulation of flavonols in pollen. Frontiers in Plant Science, 12, 672368, 2021.
    Saeed, A., Hayat, K., Khan, A., & Iqbal, S. Heat tolerance studies in tomato (Lycopersicon esculentum Mill.). International Journal of Agriculture and Biology, 9(4), 649-652, 2007.
    Sato, S., Peet, M., & Thomas, J. Physiological factors limit fruit set of tomato (Lycopersicon esculentum Mill.) under chronic, mild heat stress. Plant, cell & environment, 23(7), 719-726, 2000.
    Sato, S., Peet, M. M., & Thomas, J. F. Determining critical pre‐and post‐anthesis periods and physiological processes in Lycopersicon esculentum Mill. exposed to moderately elevated temperatures. Journal of experimental botany, 53(371), 1187-1195, 2002.
    Sato, S., Kamiyama, M., Iwata, T., Makita, N., Furukawa, H., & Ikeda, H. Moderate increase of mean daily temperature adversely affects fruit set of Lycopersicon esculentum by disrupting specific physiological processes in male reproductive development. Annals of botany, 97(5), 731-738, 2006.
    Sevik, H., & Guney, K. Effects of IAA, IBA, NAA, and GA3 on rooting and morphological features of Melissa officinalis L. stem cuttings. The Scientific World Journal, 2013, 2013.
    Sharma, A., Shahzad, B., Rehman, A., Bhardwaj, R., Landi, M., & Zheng, B. Response of Phenylpropanoid Pathway and the Role of Polyphenols in Plants under Abiotic Stress. Molecules, 24(13), 2019.
    Shi, J., Yan, B., Lou, X., Ma, H., & Ruan, S. Comparative transcriptome analysis reveals the transcriptional alterations in heat-resistant and heat-sensitive sweet maize (Zea mays L.) varieties under heat stress. BMC plant biology, 17(1), 1-10, 2017.
    Smaczniak, C., Immink, R. G., Muiño, J. M., Blanvillain, R., Busscher, M., Busscher-Lange, J., Dinh, Q., Liu, S., Westphal, A. H., & Boeren, S. Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development. Proceedings of the National Academy of Sciences, 109(5), 1560-1565, 2012.
    Snider, J. L., Russo, V. M., Roberts, W., Wann, E. V., & Raper, R. L. Cultural and environmental factors governing tomato production: local production under elevated temperatures. HortScience, 47(8), 1022-1028, 2012.
    Soyk, S., Müller, N. A., Park, S. J., Schmalenbach, I., Jiang, K., Hayama, R., Zhang, L., Van Eck, J., Jiménez-Gómez, J. M., & Lippman, Z. B. Variation in the flowering gene SELF PRUNING 5G promotes day-neutrality and early yield in tomato. Nature Genetics, 49(1), 162-168, 2017.
    Stemmer, M., Thumberger, T., del Sol Keyer, M., Wittbrodt, J., & Mateo, J. L. CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLoS One, 10(4), e0124633, 2015.
    Stocker, T. Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge university press. 2014.
    Stracke, R., Werber, M., & Weisshaar, B. The R2R3-MYB gene family in Arabidopsis thaliana. Current opinion in plant biology, 4(5), 447-456, 2001.
    Supek, F., Bošnjak, M., Škunca, N., & Šmuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One, 6(7), e21800, 2011.
    Suzuki, N., Miller, G., Morales, J., Shulaev, V., Torres, M. A., & Mittler, R. Respiratory burst oxidases: the engines of ROS signaling. Current opinion in plant biology, 14(6), 691-699, 2011.
    Szklarczyk, D., Gable, A. L., Nastou, K. C., Lyon, D., Kirsch, R., Pyysalo, S., Doncheva, N. T., Legeay, M., Fang, T., & Bork, P. The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic acids research, 49(D1), D605-D612, 2021.
    Tamura, K., Stecher, G., & Kumar, S. MEGA11: molecular evolutionary genetics analysis version 11. Molecular biology and evolution, 38(7), 3022-3027, 2021.
    Taylor, L. P., & Grotewold, E. Flavonoids as developmental regulators. Curr Opin Plant Biol, 8(3), 317-323, 2005.
    Thouet, J., Quinet, M., Ormenese, S., Kinet, J.-M., & Périlleux, C. Revisiting the involvement of SELF-PRUNING in the sympodial growth of tomato. Plant Physiology, 148(1), 61-64, 2008.
    ul Haq, S., Khan, A., Ali, M., Khattak, A. M., Gai, W.-X., Zhang, H.-X., Wei, A.-M., & Gong, Z.-H. Heat shock proteins: dynamic biomolecules to counter plant biotic and abiotic stresses. International Journal of Molecular Sciences, 20(21), 5321, 2019.
    Usman, M. G., Rafii, M. Y., Martini, M. Y., Yusuff, O. A., Ismail, M. R., & Miah, G. Molecular analysis of Hsp70 mechanisms in plants and their function in response to stress. Biotechnology and Genetic Engineering Reviews, 33(1), 26-39, 2017.
    Wada, N., Ueta, R., Osakabe, Y., & Osakabe, K. Precision genome editing in plants: state-of-the-art in CRISPR/Cas9-based genome engineering. BMC plant biology, 20(1), 234, 2020.
    Wahid, A., Gelani, S., Ashraf, M., & Foolad, M. R. Heat tolerance in plants: an overview. Environmental and experimental botany, 61(3), 199-223, 2007.
    Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao, C., & Qiu, J.-L. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature biotechnology, 32(9), 947-951, 2014.
    Wang, D., Heckathorn, S. A., Mainali, K., & Tripathee, R. Timing effects of heat-stress on plant ecophysiological characteristics and growth. Frontiers in Plant Science, 7, 1629, 2016.
    Wang, L., Chen, L., Li, R., Zhao, R., Yang, M., Sheng, J., & Shen, L. Reduced Drought Tolerance by CRISPR/Cas9-Mediated SlMAPK3 Mutagenesis in Tomato Plants. Journal of Agricultural and Food Chemistry, 65(39), 8674-8682, 2017.
    Wu, M., Xu, X., Hu, X., Liu, Y., Cao, H., Chan, H., Gong, Z., Yuan, Y., Luo, Y., Feng, B., Li, Z., & Deng, W. SlMYB72 Regulates the metabolism of chlorophylls, carotenoids, and flavonoids in tomato fruit. Plant Physiol, 183(3), 854-868, 2020.
    Wu, Y., Wen, J., Xia, Y., Zhang, L., & Du, H. Evolution and functional diversification of R2R3-MYB transcription factors in plants. Horticulture Research, 9, 2022.
    Xing, H.-L., Dong, L., Wang, Z.-P., Zhang, H.-Y., Han, C.-Y., Liu, B., Wang, X.-C., & Chen, Q.-J. A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC plant biology, 14(1), 1-12, 2014.
    Xu, W., Dubos, C., & Lepiniec, L. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends Plant Sci, 20(3), 176-185, 2015.
    Yan, S., Chen, N., Huang, Z., Li, D., Zhi, J., Yu, B., Liu, X., Cao, B., & Qiu, Z. Anthocyanin Fruit encodes an R2R3‐MYB transcription factor, SlAN2‐like, activating the transcription of SlMYBATV to fine‐tune anthocyanin content in tomato fruit. New Phytologist, 225(5), 2048-2063, 2020.
    Young, L. W., Wilen, R. W., & Bonham‐Smith, P. C. High temperature stress of Brassica napus during flowering reduces micro‐and megagametophyte fertility, induces fruit abortion, and disrupts seed production. Journal of experimental botany, 55(396), 485-495, 2004.
    Yuan, Y., Xu, X., Luo, Y., Gong, Z., Hu, X., Wu, M., Liu, Y., Yan, F., Zhang, X., Zhang, W., Tang, Y., Feng, B., Li, Z., Jiang, C.-Z., & Deng, W. R2R3 MYB-dependent auxin signaling regulates trichome formation, and increased trichome density confers spider mite tolerance on tomato. Plant Biotechnology Journal, 19(1), 138-152, 2021.
    Zhang, W., Sun, Y., Timofejeva, L., Chen, C., Grossniklaus, U., & Ma, H. Regulation of Arabidopsis tapetum development and function by DYSFUNCTIONAL TAPETUM1 (DYT1) encoding a putative bHLH transcription factor. Development, 133(16), 3085-3095, 2006.
    Zhang, X., Li, J., Liu, A., Zou, J., Zhou, X., Xiang, J., Rerksiri, W., Peng, Y., Xiong, X., & Chen, X. Expression profile in rice panicle: insights into heat response mechanism at reproductive stage. PLoS One, 7(11), e49652, 2012.
    Zhang, Y., Bai, Y., Wu, G., Zou, S., Chen, Y., Gao, C., & Tang, D. Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat. The Plant Journal, 91(4), 714-724, 2017.
    Zhang, X., Chen, L., Shi, Q., & Ren, Z. SlMYB102, an R2R3-type MYB gene, confers salt tolerance in transgenic tomato. Plant Sci, 291, 110356, 2020.
    Zhang, Y., Held, M. A., & Showalter, A. M. Elucidating the roles of three β-glucuronosyltransferases (GLCATs) acting on arabinogalactan-proteins using a CRISPR-Cas9 multiplexing approach in Arabidopsis. BMC plant biology, 20(1), 221, 2020.
    Zhang, S., Zhang, R., Gao, J., Song, G., Li, J., Li, W., Qi, Y., Li, Y., & Li, G. CRISPR/Cas9-mediated genome editing for wheat grain quality improvement. Plant Biotechnol J, 19(9), 1684-1686, 2021.
    Zhao, P., Li, Q., Li, J., Wang, L., & Ren, Z. Genome-wide identification and characterization of R2R3MYB family in Solanum lycopersicum. Mol Genet Genomics, 289(6), 1183-1207, 2014.
    Zhu, H., Li, C., & Gao, C. Applications of CRISPR–Cas in agriculture and plant biotechnology. Nature Reviews Molecular Cell Biology, 21(11), 661-677, 2020.
    Zinn, K. E., Tunc-Ozdemir, M., & Harper, J. F. Temperature stress and plant sexual reproduction: uncovering the weakest links. Journal of experimental botany, 61(7), 1959-1968, 2010.
    Zoulias, N., Koenig, D., Hamidi, A., McCormick, S., & Kim, M. A role for PHANTASTICA in medio-lateral regulation of adaxial domain development in tomato and tobacco leaves. Annals of botany, 109(2), 407-418, 2011.
    Zsögön, A., Cermak, T., Voytas, D., & Peres, L. E. P. Genome editing as a tool to achieve the crop ideotype and de novo domestication of wild relatives: case study in tomato. Plant Science, 256, 120-130, 2017.
    Zsögön, A., Čermák, T., Naves, E. R., Notini, M. M., Edel, K. H., Weinl, S., Freschi, L., Voytas, D. F., Kudla, J., & Peres, L. E. P. De novo domestication of wild tomato using genome editing. Nature biotechnology, 36(12), 1211-1216, 2018.

    無法下載圖示 校內:2027-09-21公開
    校外:2027-09-21公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE