簡易檢索 / 詳目顯示

研究生: 賴俊杰
Lai, Chun-Chieh
論文名稱: Toll樣受體3在紫外線引起的眼翳形成扮演一個致病的角色
The pathogenic role of Toll-like receptor 3 in the ultraviolet light-induced pterygium formation
指導教授: 謝奇璋
Shieh, Chi-Chang
曾順輝
Tseng, Sung-Huei
許聖民
Hsu, Sheng-Min
學位類別: 博士
Doctor
系所名稱: 醫學院 - 臨床醫學研究所
Institute of Clinical Medicine
論文出版年: 2021
畢業學年度: 110
語文別: 英文
論文頁數: 75
中文關鍵詞: 眼翳眼翳表皮細胞Toll樣受體3中波紫外線(UVB)核因子活化B細胞κ輕鏈增強子腫瘤蛋白p63去氧核糖核酸
外文關鍵詞: NF-κB, pterygium, pterygial epithelial cells, p63, RNA, Toll-like receptor 3, ultraviolet B
相關次數: 點閱:90下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Toll樣受體3(TLR3)藉由偵測損害相關分子模式,可以檢測到中波紫外線(UVB)損傷皮膚細胞而導致死亡所釋放出來的self-RNA,進而造成類似曬傷的皮膚急性炎症。眼翳(或名:翼狀贅肉)也被認為是和紫外線輻射相關的疾病,眼表面細胞因長期曝照於紫外線,導致細胞活化增生,造成類似腫瘤形成的變化,這可解釋眼翳在經常太陽光照射的病人身上有高患病率。由於眼翳是紫外線相關不受控制的細胞增殖,我們推測TLR3相關UVB損傷途徑可能也與眼翳的發病機制有關。在這裡,我們研究TLR3在眼翳以及眼翳培養細胞的表現。用於本研究的檢體取自同一患者的眼翳和同側眼正常的結膜,並研究TLR3,p63和NF-κB的表現。另外我們也培養眼翳上皮細胞,並使細胞暴露於UVB輻射下,以確定UVB對TLR3表現和NF-κB活化的影響。相較於正常結膜,我們發現在眼翳組織中,細胞質TLR3的表現與NF-κB轉移至細胞核中及p63的表現皆具有較強的現象。另外,TLR3的表現在眼翳的分層鱗狀上皮中具有梯度分佈,在最淺層上皮細胞中染色最強,而最深層基底細胞層的染色較弱。這樣暗示了紫外線照射與TLR3表現之間的關係,因為紫外線照射通常是造成表層細胞暴露最多也最強。在qPCR實驗中,也發現眼翳和結膜組織有不同的TLR3基因表現量。UVB照射後的眼翳培養細胞,TLR3蛋白表現和NF-κB的活化高於未受照射的細胞。免疫螢光研究發現,UVB輻射可誘導眼翳培養細胞的NF-κB入核。相反地,在培養細胞接受TLR3基因的抑制之後,這些眼翳細胞就不會因為UVB輻射而導致NF-κB的活化,表示這樣的一個反應是仰賴於TLR3這個因子的表現與否。本研究首次發現眼翳和同側眼正常結膜組織之間的TLR3和p63表現有差異,表明TLR3和p63可能在眼翳的發病機轉中扮演重要角色。眼翳培養細胞中TLR3的表現增加以及UVB輻射誘導的NF-κB入核,也表明了UVB輻射、TLR3的表現和NF-κB的活化可能是導致眼翳形成的一個致病過程。

    Toll-like receptor 3 (TLR3), as a damage-associated molecular pattern sensor, can detect self noncoding RNA, which could be released from necrotic cells induced by ultraviolet B (UVB) radiation. The formation of pterygium is believed to be a tumorigenesis-like process in association with UVB exposure. In this study, we aimed to investigate the expression pattern of TLR3 in pterygial tissues and cultured pterygial epithelial cells (PECs).
    In this study, human pterygial specimens and ipsilateral pterygium-free conjunctival specimens from the same patients were used. The expression of TLR3 and nuclear localization of NF-κB were investigated in these tissues. Besides, PECs were irradiated with UVB to determine the effect of UVB radiation on the expression of TLR3 and the activation of NF-κB.
    In our experiments, an immunofluorescence study showed stronger TLR3 expression in superficial epithelial cells in the pterygium when compared with the normal conjunctival epithelium. The expression of TLR3 decreased in intensity from the superficial epithelium toward the basal cell layers, implying a correlation between TLR3 expression and UVB exposure. A qPCR study showed differential expression patterns of TLR3 between pterygial tissues and conjunctival tissues. PECs after exposure to UVB radiation had significantly higher levels of TLR3 proteins and phospho-NF-κB than those of the PECs without UVB exposure. The immunofluorescence studies showed that UVB radiation induced the nuclear translocation of NF-κB in the PECs. In PECs with the targeted TLR3 gene silencing, the expression of phospho-NF-κB was not induced to increase by UVB irradiation. In conclusion, our results indicate that UVB damage, TLR3 expression, and NF-κB activation may be a critical sequence that leads to the pterygium formation.

    Contents Chapter 1. Introduction 1 1.1. Tumorigenesis in pterygium 1 1.2. Ultraviolet B (UVB) in pterygium 6 1.3. Toll-like receptor 3 (TLR3) in pterygium 9 1.4. Treatments for pterygium and managements of complications 12 Chapter 2. The application of pushed-type monocanalicular intubation (MCI) in patients with obstruction of lacrimal drainage system at NCKUH 16 2.1. Balloon dacryocystoplasty combined with pushed-type MCI as the primary surgical management for congenital nasolacrimal duct obstruction 16 2.2. Balloon dacryocystoplasty with pushed-type MCI as a primary surgical management for primary acquired nasolacrimal duct obstruction 18 Chapter 3. The pathogenic role of Toll-like receptor 3 in the ultraviolet light-induced pterygium formation 22 3.1. Objective of this study 22 3.2. Materials and methods 23 3.3. Results 31 3.3.1. TLR3 was highly expressed in the tissue of pterygium 31 3.3.2. The nuclear localization of NF-κB in pterygium was more significant than ipsilateral pterygium-free conjunctiva 33 3.3.3. UVB irradiation induced upregulation of TLR3 and nuclear translocation of NF-κB in pterygial epithelial cells (PECs) 33 3.3.4. The TLR3 ligand, poly(I:C), promoted cell proliferation of PECs 34 3.3.5. UVB-induced phosphorylation of NF-κB in PECs was dependent on the TLR3-signaling pathway 34 3.3.6. RNA may play a key role in UVB-induced TLR3-TRIF-NF-κB signaling pathway in PECs 35 3.3.7. UVB irradiation induced production of IL-6 in PECs 36 3.3.8. The cell lysates from UVB-irradiated PECs induced production of IL-6 in PECs 36 3.3.9. Loop a and Loop b of synthetic U1 RNA induced production of IL-6 in PECs 36 3.3.10. U1 RNA may play a key role in the TLR3-TRIF signaling pathway in PECs 37 3.3.11. UVB irradiation induced inflammatory reaction and increased the expression of TLR3 in the eye of mice 37 Chapter 4. Discussions 39 Chapter 5. Conclusion 47 Chapter 6. Figures and figure legends 48 References 70

    1. Coroneo MT. Pterygium as an early indicator of ultraviolet insolation: a hypothesis. Br J Ophthalmol. Nov 1993;77(11):734-9.
    2. Wanzeler ACV, Barbosa IAF, Duarte B, et al. Mechanisms and biomarker candidates in pterygium development. Arquivos brasileiros de oftalmologia. 2019;82(6):528-536. doi:10.5935/0004-2749.20190103
    3. Maurizi E, Schiroli D, Atkinson SD, et al. A novel role for CRIM1 in the corneal response to UV and pterygium development. Experimental eye research. Feb 2019;179:75-92. doi:10.1016/j.exer.2018.10.012
    4. Pinkerton OD, Hokama Y, Shigemura LA. Immunologic basis for the pathogenesis of pterygium. Am J Ophthalmol. Aug 15 1984;98(2):225-8.
    5. Jiao W, Zhou C, Wang T, et al. Prevalence and risk factors for pterygium in rural older adults in Shandong Province of China: a cross-sectional study. BioMed research international. 2014;2014:658648. doi:10.1155/2014/658648
    6. Singh SK. Pterygium: epidemiology prevention and treatment. Community eye health. 2017;30(99):S5-S6.
    7. Sebastia R, Ventura MP, Solari HP, Antecka E, Orellana ME, Burnier MN, Jr. Immunohistochemical detection of Hsp90 and Ki-67 in pterygium. Diagnostic pathology. Feb 21 2013;8:32. doi:10.1186/1746-1596-8-32
    8. Wang IJ, Hu FR, Chen PJ, Lin CT. Mechanism of abnormal elastin gene expression in the pinguecular part of pterygia. Am J Pathol. Oct 2000;157(4):1269-76.
    9. Liu L, Yang D. Immunological studies on the pathogenesis of pterygium. Chin Med Sci J. Jun 1993;8(2):84-8.
    10. Powers MR, Qu Z, O'Brien B, Wilson DJ, Thompson JE, Rosenbaum JT. Immunolocalization of bFGF in pterygia: association with mast cells. Cornea. Sep 1997;16(5):545-9.
    11. Clearfield E, Muthappan V, Wang X, Kuo IC. Conjunctival autograft for pterygium. The Cochrane database of systematic reviews. Feb 11 2016;2:CD011349. doi:10.1002/14651858.CD011349.pub2
    12. Tsai YY, Chiang CC, Yeh KT, Lee H, Cheng YW. Effect of TIMP-1 and MMP in pterygium invasion. Invest Ophthalmol Vis Sci. Jul 2010;51(7):3462-7. doi:10.1167/iovs.09-4921
    13. Kase S, Takahashi S, Sato I, Nakanishi K, Yoshida K, Ohno S. Expression of p27(KIP1) and cyclin D1, and cell proliferation in human pterygium. Br J Ophthalmol. Jul 2007;91(7):958-61. doi:10.1136/bjo.2006.110387
    14. Nubile M, Curcio C, Lanzini M, et al. Expression of CREB in primary pterygium and correlation with cyclin D1, ki-67, MMP7, p53, p63, Survivin and Vimentin. Ophthalmic research. 2013;50(2):99-107. doi:10.1159/000347124
    15. Liang K, Jiang Z, Ding BQ, Cheng P, Huang DK, Tao LM. Expression of cell proliferation and apoptosis biomarkers in pterygia and normal conjunctiva. Molecular vision. 2011;17:1687-93.
    16. Qin Z, Fu Q, Zhang L, et al. Proliferative Effects of Histamine on Primary Human Pterygium Fibroblasts. Mediators of inflammation. 2016;2016:9862496. doi:10.1155/2016/9862496
    17. Garfias Y, Bautista-De Lucio VM, Garcia C, Nava A, Villalvazo L, Jimenez-Martinez MC. Study of the expression of CD30 in pterygia compared to healthy conjunctivas. Molecular vision. Oct 17 2009;15:2068-73.
    18. Cao D, Ng TK, Yip YWY, et al. p53 inhibition by MDM2 in human pterygium. Experimental eye research. Oct 2018;175:142-147. doi:10.1016/j.exer.2018.06.021
    19. Tsai YY, Chang KC, Lin CL, et al. p53 Expression in pterygium by immunohistochemical analysis: a series report of 127 cases and review of the literature. Cornea. Jul 2005;24(5):583-6. doi:10.1097/01.ico.0000154404.86462.35
    20. Tsai YY, Cheng YW, Lee H, Tsai FJ, Tseng SH, Chang KC. P53 gene mutation spectrum and the relationship between gene mutation and protein levels in pterygium. Molecular vision. Jan 18 2005;11:50-5.
    21. Zhao D, Zhao H, He Y, Yang Y, Du Y, Zhang M. The inhibitive effects of proteasome inhibitor MG-132 on pterygium fibroblasts in vitro and the potential key regulators involved. Life sciences. Apr 1 2021;270:119088. doi:10.1016/j.lfs.2021.119088
    22. Ozturk BT, Yildirim MS, Zamani A, Bozkurt B. K-ras oncogene mutation in pterygium. Eye. Mar 2017;31(3):491-498. doi:10.1038/eye.2016.254
    23. Xu YX, Zhang LY, Zou DL, et al. Differential expression and function of survivin during the progress of pterygium. Invest Ophthalmol Vis Sci. Dec 2 2014;55(12):8480-7.
    24. Zhang LW, Chen BH, Xi XH, Han QQ, Tang LS. Survivin and p53 expression in primary and recurrent pterygium in Chinese patients. International journal of ophthalmology. 2011;4(4):388-92. doi:10.3980/j.issn.2222-3959.2011.04.13
    25. Atkinson SD, Moore JE, Shah S, et al. P63 expression in conjunctival proliferative diseases: pterygium and laryngo-onycho-cutaneous (LOC) syndrome. Current eye research. Jul 2008;33(7):551-8. doi:10.1080/02713680802187453
    26. Sakoonwatanyoo P, Tan DT, Smith DR. Expression of p63 in pterygium and normal conjunctiva. Cornea. Jan 2004;23(1):67-70. doi:10.1097/00003226-200401000-00011
    27. Ramalho FS, Maestri C, Ramalho LN, Ribeiro-Silva A, Romao E. Expression of p63 and p16 in primary and recurrent pterygia. Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie. Oct 2006;244(10):1310-4. doi:10.1007/s00417-006-0287-5
    28. Delic NC, Lyons JG, Di Girolamo N, Halliday GM. Damaging Effects of Ultraviolet Radiation on the Cornea. Photochemistry and photobiology. Jul 2017;93(4):920-929. doi:10.1111/php.12686
    29. Zhou WP, Zhu YF, Zhang B, Qiu WY, Yao YF. The role of ultraviolet radiation in the pathogenesis of pterygia (Review). Molecular medicine reports. Jul 2016;14(1):3-15. doi:10.3892/mmr.2016.5223
    30. Li X, Dai Y, Xu J. MiR-21 promotes pterygium cell proliferation through the PTEN/AKT pathway. Molecular vision. 2018;24:485-494.
    31. Zavala J, Hernandez-Camarena JC, Salvador-Galvez B, Perez-Saucedo JE, Vela-Martinez A, Valdez-Garcia JE. Extracellular matrix and fibroblast injection produces pterygium-like lesion in rabbits. Biological research. Jun 5 2018;51(1):15. doi:10.1186/s40659-018-0165-8
    32. Igarashi N, Honjo M, Fujishiro T, et al. Activation of the Sphingosine 1 Phosphate-Rho Pathway in Pterygium and in Ultraviolet-Irradiated Normal Conjunctiva. International journal of molecular sciences. Sep 20 2019;20(19)doi:10.3390/ijms20194670
    33. Siak JJ, Ng SL, Seet LF, Beuerman RW, Tong L. The nuclear-factor kappaB pathway is activated in pterygium. Invest Ophthalmol Vis Sci. Jan 5 2011;52(1):230-6.
    34. Di Girolamo N, Kumar RK, Coroneo MT, Wakefield D. UVB-mediated induction of interleukin-6 and -8 in pterygia and cultured human pterygium epithelial cells. Invest Ophthalmol Vis Sci. Nov 2002;43(11):3430-7.
    35. Borkowski AW, Gallo RL. UVB radiation illuminates the role of TLR3 in the epidermis. The Journal of investigative dermatology. Sep 2014;134(9):2315-2320. doi:10.1038/jid.2014.167
    36. Lan W, Petznick A, Heryati S, Rifada M, Tong L. Nuclear Factor-kappaB: central regulator in ocular surface inflammation and diseases. The ocular surface. Jul 2012;10(3):137-48. doi:10.1016/j.jtos.2012.04.001
    37. El Ghissassi F, Baan R, Straif K, et al. A review of human carcinogens--part D: radiation. Lancet Oncol. Aug 2009;10(8):751-2.
    38. Lai FJ, Cheng CL, Chen ST, et al. WOX1 is essential for UVB irradiation-induced apoptosis and down-regulated via translational blockade in UVB-induced cutaneous squamous cell carcinoma in vivo. Clin Cancer Res. Aug 15 2005;11(16):5769-77.
    39. Yu HC, Lin CL, Chen ZT, Hu FR, Sung FC, Wang IJ. Risk of skin cancer in patients with pterygium: a nationwide population-based cohort study in Taiwan. The ocular surface. Jan 2014;12(1):69-76. doi:10.1016/j.jtos.2013.08.003
    40. Hara Y, Shiraishi A, Kobayashi T, et al. Alteration of TLR3 pathways by glucocorticoids may be responsible for immunosusceptibility of human corneal epithelial cells to viral infections. Molecular vision. May 8 2009;15:937-48.
    41. Pearlman E, Johnson A, Adhikary G, et al. Toll-like receptors at the ocular surface. The ocular surface. Jul 2008;6(3):108-16.
    42. Bernard JJ, Cowing-Zitron C, Nakatsuji T, et al. Ultraviolet radiation damages self noncoding RNA and is detected by TLR3. Nature medicine. Aug 2012;18(8):1286-90.
    43. Hoffman RW, Gazitt T, Foecking MF, et al. U1 RNA induces innate immunity signaling. Arthritis and rheumatism. Sep 2004;50(9):2891-6. doi:10.1002/art.20428
    44. Lai Y, Di Nardo A, Nakatsuji T, et al. Commensal bacteria regulate Toll-like receptor 3-dependent inflammation after skin injury. Nature medicine. Dec 2009;15(12):1377-82. doi:10.1038/nm.2062
    45. Kopp ED, Seregard S. Epiphora as a side effect of topical mitomycin C. Br J Ophthalmol. Nov 2004;88(11):1422-4. doi:10.1136/bjo.2004.048033
    46. Koike S, Yamasaki K, Yamauchi T, et al. Toll-like receptors 2 and 3 enhance melanogenesis and melanosome transport in human melanocytes. Pigment cell & melanoma research. Sep 2018;31(5):570-584. doi:10.1111/pcmr.12703
    47. Borkowski AW, Kuo IH, Bernard JJ, et al. Toll-like receptor 3 activation is required for normal skin barrier repair following UV damage. The Journal of investigative dermatology. Feb 2015;135(2):569-578. doi:10.1038/jid.2014.354
    48. Feingold KR. TLR3: a receptor that recognizes cell injury is essential for permeability barrier homeostasis following UV irradiation. The Journal of investigative dermatology. Feb 2015;135(2):339-340. doi:10.1038/jid.2014.424
    49. Wu N, Rollin J, Masse I, Lamartine J, Gidrol X. p63 regulates human keratinocyte proliferation via MYC-regulated gene network and differentiation commitment through cell adhesion-related gene network. The Journal of biological chemistry. Feb 17 2012;287(8):5627-38. doi:10.1074/jbc.M111.328120
    50. Pellegrini G, Dellambra E, Golisano O, et al. p63 identifies keratinocyte stem cells. Proceedings of the National Academy of Sciences of the United States of America. Mar 13 2001;98(6):3156-61. doi:10.1073/pnas.061032098
    51. Kennedy M, Kim KH, Harten B, et al. Ultraviolet irradiation induces the production of multiple cytokines by human corneal cells. Invest Ophthalmol Vis Sci. Nov 1997;38(12):2483-91.
    52. Yamada K, Ueta M, Sotozono C, Yokoi N, Inatomi T, Kinoshita S. Upregulation of Toll-like receptor 5 expression in the conjunctival epithelium of various human ocular surface diseases. Br J Ophthalmol. Aug 2014;98(8):1116-9. doi:10.1136/bjophthalmol-2013-304645

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE