| 研究生: |
朱晏良 Chu, Yen-Liang |
|---|---|
| 論文名稱: |
水溶性聚(N-乙烯甲醯胺)黏著劑應用於鋰離子電池之鋰鈦氧負極 Poly(N-vinylformamide) as Water-soluble Binder for Lithium Titanate Anode in Lithium-ion Battery |
| 指導教授: |
詹正雄
Jan, Jeng-Shiung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 聚(N-乙烯甲醯胺) 、水溶性黏著劑 、鋰鈦氧負極 、鋰離子電池 、電解液添加劑 、鈕扣全電池 |
| 外文關鍵詞: | Aqueous binder, Poly(N-vinylformamide), Li4Ti5O12, Anode, Lithium-ion batteries |
| 相關次數: | 點閱:54 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
1. Khalil, H. B.; Zaidi, S. J. H., Energy crisis and potential of solar energy in Pakistan. Renewable and Sustainable Energy Reviews 2014, 31, 194-201.
2. Manthiram, A., An Outlook on Lithium Ion Battery Technology. ACS Cent Sci 2017, 3 (10), 1063-1069.
3. Yoshino, A., Development of the Lithium-Ion Battery and Recent Technological Trends. In Lithium-Ion Batteries, 2014; pp 1-20.
4. Huang, Q.; Wang, Q., Next-Generation, High-Energy-Density Redox Flow Batteries. ChemPlusChem 2015, 80 (2), 312-322.
5. Yoshino, A., The birth of the lithium-ion battery. Angew Chem Int Ed Engl 2012, 51 (24), 5798-800.
6. Jana, A.; Woo, S. I.; Vikrant, K. S. N.; García, R. E., Electrochemomechanics of lithium dendrite growth. Energy & Environmental Science 2019, 12 (12), 3595-3607.
7. Monroe, C.; Newman, J., Dendrite Growth in Lithium/Polymer Systems. Journal of The Electrochemical Society 2003, 150 (10).
8. Gireaud, L.; Grugeon, S.; Laruelle, S.; Yrieix, B.; Tarascon, J. M., Lithium metal stripping/plating mechanisms studies: A metallurgical approach. Electrochemistry Communications 2006, 8 (10), 1639-1649.
9. Liu, Y.; Liu, Q.; Xin, L.; Liu, Y.; Yang, F.; Stach, E. A.; Xie, J., Making Li-metal electrodes rechargeable by controlling the dendrite growth direction. Nature Energy 2017, 2 (7).
10. Scrosat, B., Lithium Rocking Chair Batteries: An Old Concept? Journal of The Electrochemical Society 1992, 139, 2776.
11. Ozawa, K., Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system. Solid State Ionies 1994, 69, 212-221.
12. Thackeray, M. M.; Wolverton, C.; Isaacs, E. D., Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries. Energy & Environmental Science 2012, 5 (7).
13. Chen, Z.; Zhang, W.; Yang, Z., A review on cathode materials for advanced lithium ion batteries: microstructure designs and performance regulations. Nanotechnology 2020, 31 (1), 012001.
14. Chakraborty, A.; Kunnikuruvan, S.; Kumar, S.; Markovsky, B.; Aurbach, D.; Dixit, M.; Major, D. T., Layered Cathode Materials for Lithium-Ion Batteries: Review of Computational Studies on LiNi1-x-yCoxMnyO2 and LiNi1-x-yCoxAlyO2. Chemistry of Materials 2020, 32 (3), 915-952.
15. Padhi, A. K., Kirakodu S. Nanjundaswamy, and John B. Goodenough., Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries. Journal of the electrochemical society 1997, 144, 1188.
16. Shi, S.; Liu, L.; Ouyang, C.; Wang, D.-s.; Wang, Z.; Chen, L.; Huang, X., Enhancement of electronic conductivity of LiFePO4 by Cr doping and its identification by first-principles calculations. Physical Review B 2003, 68 (19).
17. Mizushima, K. J. P. C., et al., LixCoO2: A new cathode material for batteries of high energy density. Materials Research Bulletin 1980, 15, 783-789.
18. Thomas, M. G. S. R., P. G. Bruce, and J. B. Goodenough., Lithium mobility in the layered oxide Li1-xCoO2. Solid State Ionics 1985, 17, 13-19.
19. Ohzuku, T., and Atsushi Ueda., Solid‐state redox reactions of LiCoO2 (R3m) for 4 Volt secondary lithium cells. Journal of The Electrochemical Society 1994, 141, 2972.
20. Thackeray, M. M., A. De Kock, and W. I. F. David., Synthesis and structural characterization of defect spinels in the lithium-manganese-oxide system. Materials Research Bulletin 1993, 28, 1041-1049.
21. He, X.; Li, J.; Cai, Y.; Wang, Y.; Ying, J.; Jiang, C.; Wan, C., Preparation of co-doped spherical spinel LiMn2O4 cathode materials for Li-ion batteries. Journal of Power Sources 2005, 150, 216-222.
22. Nitta, N.; Wu, F.; Lee, J. T.; Yushin, G., Li-ion battery materials: present and future. Materials Today 2015, 18 (5), 252-264.
23. Huang, Y.; Dong, Y.; Li, S.; Lee, J.; Wang, C.; Zhu, Z.; Xue, W.; Li, Y.; Li, J., Lithium Manganese Spinel Cathodes for Lithium‐Ion Batteries. Advanced Energy Materials 2020, 11 (2).
24. Jian, Z.; Bommier, C.; Luo, L.; Li, Z.; Wang, W.; Wang, C.; Greaney, P. A.; Ji, X., Insights on the Mechanism of Na-Ion Storage in Soft Carbon Anode. Chemistry of Materials 2017, 29 (5), 2314-2320.
25. Fujimoto, H.; Tokumitsu, K.; Mabuchi, A.; Chinnasamy, N.; Kasuh, T., The anode performance of the hard carbon for the lithium ion battery derived from the oxygen-containing aromatic precursors. Journal of Power Sources 2010, 195 (21), 7452-7456.
26. Wu, H.; Chan, G.; Choi, J. W.; Ryu, I.; Yao, Y.; McDowell, M. T.; Lee, S. W.; Jackson, A.; Yang, Y.; Hu, L.; Cui, Y., Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat Nanotechnol 2012, 7 (5), 310-5.
27. Zhou, X.; Yin, Y.-X.; Wan, L.-J.; Guo, Y.-G., Self-Assembled Nanocomposite of Silicon Nanoparticles Encapsulated in Graphene through Electrostatic Attraction for Lithium-Ion Batteries. Advanced Energy Materials 2012, 2 (9), 1086-1090.
28. Courtel, F. M.; Niketic, S.; Duguay, D.; Abu-Lebdeh, Y.; Davidson, I. J., Water-soluble binders for MCMB carbon anodes for lithium-ion batteries. Journal of Power Sources 2011, 196 (4), 2128-2134.
29. Zheng, H.; Yang, R.; Liu, G.; Song, X.; Battaglia, V. S., Cooperation between Active Material, Polymeric Binder and Conductive Carbon Additive in Lithium Ion Battery Cathode. The Journal of Physical Chemistry C 2012, 116 (7), 4875-4882.
30. Ma, Y.; Ma, J.; Cui, G., Small things make big deal: Powerful binders of lithium batteries and post-lithium batteries. Energy Storage Materials 2019, 20, 146-175.
31. Chen, H.; Ling, M.; Hencz, L.; Ling, H. Y.; Li, G.; Lin, Z.; Liu, G.; Zhang, S., Exploring Chemical, Mechanical, and Electrical Functionalities of Binders for Advanced Energy-Storage Devices. Chem Rev 2018, 118 (18), 8936-8982.
32. Lee, S.; Park, J.; Yang, J.; Lu, W., Molecular Dynamics Simulations of the Traction-Separation Response at the Interface between PVDF Binder and Graphite in the Electrode of Li-Ion Batteries. Journal of The Electrochemical Society 2014, 161 (9), A1218-A1223.
33. Salini, P. S.; Gopinadh, S. V.; Kalpakasseri, A.; John, B.; Thelakkattu Devassy, M., Toward Greener and Sustainable Li-Ion Cells: An Overview of Aqueous-Based Binder Systems. ACS Sustainable Chemistry & Engineering 2020, 8 (10), 4003-4025.
34. Goodenough, J. B.; Kim, Y., Challenges for Rechargeable Li Batteries. Chemistry of Materials 2009, 22 (3), 587-603.
35. Hayashi, K., et al, Mixed solvent electrolyte for high voltage lithium metal secondary cells. Electrochimica Acta 1999, 44, 2337-2344.
36. Xu, K., Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical reviews 2004, 104, 4303-4418.
37. Li, Q.; Chen, J.; Fan, L.; Kong, X.; Lu, Y., Progress in electrolytes for rechargeable Li-based batteries and beyond. Green Energy & Environment 2016, 1 (1), 18-42.
38. Feuillade, G., and Ph Perche., Ion-conductive macromolecular gels and membranes for solid lithium cells. Journal of Applied Electrochemistry 1975, 5, 63-69.
39. Yao, P.; Yu, H.; Ding, Z.; Liu, Y.; Lu, J.; Lavorgna, M.; Wu, J.; Liu, X., Review on Polymer-Based Composite Electrolytes for Lithium Batteries. Front Chem 2019, 7, 522.
40. Meyer, W. H., Polymer electrolytes for lithium‐ion batteries. Advanced materials 1998, 10, 439-448.
41. Kato, Y.; Hori, S.; Saito, T.; Suzuki, K.; Hirayama, M.; Mitsui, A.; Yonemura, M.; Iba, H.; Kanno, R., High-power all-solid-state batteries using sulfide superionic conductors. Nature Energy 2016, 1 (4).
42. Birkl, C. R.; Roberts, M. R.; McTurk, E.; Bruce, P. G.; Howey, D. A., Degradation diagnostics for lithium ion cells. Journal of Power Sources 2017, 341, 373-386.
43. Han, X.; Lu, L.; Zheng, Y.; Feng, X.; Li, Z.; Li, J.; Ouyang, M., A review on the key issues of the lithium ion battery degradation among the whole life cycle. eTransportation 2019, 1.
44. Han, C.; He, Y.-B.; Liu, M.; Li, B.; Yang, Q.-H.; Wong, C.-P.; Kang, F., A review of gassing behavior in Li4Ti5O12-based lithium ion batteries. Journal of Materials Chemistry A 2017, 5 (14), 6368-6381.
45. Lv, W.; Gu, J.; Niu, Y.; Wen, K.; He, W., Review—Gassing Mechanism and Suppressing Solutions in Li4Ti5O12-Based Lithium-Ion Batteries. Journal of The Electrochemical Society 2017, 164 (9), A2213-A2224.
46. Zhang, W.; Topsakal, M.; Cama, C.; Pelliccione, C. J.; Zhao, H.; Ehrlich, S.; Wu, L.; Zhu, Y.; Frenkel, A. I.; Takeuchi, K. J.; Takeuchi, E. S.; Marschilok, A. C.; Lu, D.; Wang, F., Multi-Stage Structural Transformations in Zero-Strain Lithium Titanate Unveiled by in Situ X-ray Absorption Fingerprints. J Am Chem Soc 2017, 139 (46), 16591-16603.
47. Kitta, M.; Akita, T.; Tanaka, S.; Kohyama, M., Characterization of two phase distribution in electrochemically-lithiated spinel Li4Ti5O12 secondary particles by electron energy-loss spectroscopy. Journal of Power Sources 2013, 237, 26-32.
48. Cheng, Q.; Tang, S.; Liang, J.; Zhao, J.; Lan, Q.; Liu, C.; Cao, Y.-C., High rate performance of the carbon encapsulated Li4Ti5O12 for lithium ion battery. Results in Physics 2017, 7, 810-812.
49. He, Y. B.; Li, B.; Liu, M.; Zhang, C.; Lv, W.; Yang, C.; Li, J.; Du, H.; Zhang, B.; Yang, Q. H.; Kim, J. K.; Kang, F., Gassing in Li4Ti5O12-based batteries and its remedy. Sci Rep 2012, 2, 913.
50. He, Y.-B.; Ning, F.; Li, B.; Song, Q.-S.; Lv, W.; Du, H.; Zhai, D.; Su, F.; Yang, Q.-H.; Kang, F., Carbon coating to suppress the reduction decomposition of electrolyte on the Li4Ti5O12 electrode. Journal of Power Sources 2012, 202, 253-261.
51. Liu, G.; Zheng, H.; Song, X.; Battaglia, V. S., Particles and Polymer Binder Interaction: A Controlling Factor in Lithium-Ion Electrode Performance. Journal of The Electrochemical Society 2012, 159 (3), A214-A221.
52. Gong, L.; Nguyen, M. H. T.; Oh, E.-S., High polar polyacrylonitrile as a potential binder for negative electrodes in lithium ion batteries. Electrochemistry Communications 2013, 29, 45-47.
53. Guerfi, A.; Kaneko, M.; Petitclerc, M.; Mori, M.; Zaghib, K., LiFePO4 water-soluble binder electrode for Li-ion batteries. Journal of Power Sources 2007, 163 (2), 1047-1052.
54. Zhang, Z.; Zeng, T.; Lai, Y.; Jia, M.; Li, J., A comparative study of different binders and their effects on electrochemical properties of LiMn2O4 cathode in lithium ion batteries. Journal of Power Sources 2014, 247, 1-8.
55. Li, J.; Armstrong, B. L.; Kiggans, J.; Daniel, C.; Wood, D. L., 3rd, Optimization of LiFePO4 nanoparticle suspensions with polyethyleneimine for aqueous processing. Langmuir 2012, 28 (8), 3783-90.
56. Zaghib, K., et al., Water soluble binder for LiFePO4/polymer/carbon HQ technology. ECS Transactions 2007, 3, 19.
57. Phanikumar, V. V. N.; Rikka, V. R.; Das, B.; Gopalan, R.; Appa Rao, B. V.; Prakash, R., Investigation on polyvinyl alcohol and sodium alginate as aqueous binders for lithium-titanium oxide anode in lithium-ion batteries. Ionics 2018, 25 (6), 2549-2561.
58. Lee, J.-H.; Paik, U.; Hackley, V. A.; Choi, Y.-M., Effect of Carboxymethyl Cellulose on Aqueous Processing of Natural Graphite Negative Electrodes and their Electrochemical Performance for Lithium Batteries. Journal of The Electrochemical Society 2005, 152 (9).
59. Chou, S.-L.; Wang, J.-Z.; Liu, H.-K.; Dou, S.-X., Rapid Synthesis of Li4Ti5O12 Microspheres as Anode Materials and Its Binder Effect for Lithium-Ion Battery. The Journal of Physical Chemistry C 2011, 115 (32), 16220-16227.
60. Lux, S. F.; Schappacher, F.; Balducci, A.; Passerini, S.; Winter, M., Low Cost, Environmentally Benign Binders for Lithium-Ion Batteries. Journal of The Electrochemical Society 2010, 157 (3).
61. Lee, B.-R.; Oh, E.-S., Effect of Molecular Weight and Degree of Substitution of a Sodium-Carboxymethyl Cellulose Binder on Li4Ti5O12 Anodic Performance. The Journal of Physical Chemistry C 2013, 117 (9), 4404-4409.
62. De Kerchove, A. J., and Menachem Elimelech., Formation of polysaccharide gel layers in the presence of Ca2+ and K+ ions: Measurements and mechanisms. Biomacromolecules 2007, 8, 113-121.
63. De Giorgio, F.; La Monaca, A.; Dinter, A.; Frankenberger, M.; Pettinger, K.-H.; Arbizzani, C., Water-processable Li4Ti5O12 electrodes featuring eco-friendly sodium alginate binder. Electrochimica Acta 2018, 289, 112-119.
64. Zhang, Z.; Zeng, T.; Qu, C.; Lu, H.; Jia, M.; Lai, Y.; Li, J., Cycle performance improvement of LiFePO4 cathode with polyacrylic acid as binder. Electrochimica Acta 2012, 80, 440-444.
65. Cai, Z. P.; Liang, Y.; Li, W. S.; Xing, L. D.; Liao, Y. H., Preparation and performances of LiFePO4 cathode in aqueous solvent with polyacrylic acid as a binder. Journal of Power Sources 2009, 189 (1), 547-551.
66. Magasinski, A.; Zdyrko, B.; Kovalenko, I.; Hertzberg, B.; Burtovyy, R.; Huebner, C. F.; Fuller, T. F.; Luzinov, I.; Yushin, G., Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid. ACS Appl Mater Interfaces 2010, 2 (11), 3004-10.
67. Birrozzi, A.; Copley, M.; von Zamory, J.; Pasqualini, M.; Calcaterra, S.; Nobili, F.; Cicco, A. D.; Rajantie, H.; Briceno, M.; Bilbé, E.; Cabo-Fernandez, L.; Hardwick, L. J.; Bresser, D.; Passerini, S., Scaling up “Nano” Li4Ti5O12 for High-Power Lithium-Ion Anodes Using Large Scale Flame Spray Pyrolysis. Journal of The Electrochemical Society 2015, 162 (12), A2331-A2338.
68. Gu, L.; Zhu, S.; Hrymak, A. N., Acidic and basic hydrolysis of poly(N-vinylformamide). Journal of Applied Polymer Science 2002, 86 (13), 3412-3419.
69. Witek, E.; Pazdro, M.; Bortel, E., Mechanism for Base Hydrolysis of Poly(N‐vinylformamide). Journal of Macromolecular Science, Part A 2007, 44 (5), 503-507.
70. Gu, L., et al., The Nature of Crosslinking in N‐Vinylformamide Free‐Radical Polymerization. Macromolecular rapid communications 2001, 22, 212-214.
71. Tzeng, J.-K., and Sheng-Shu Hou., Interactions between poly (N-vinylformamide) and sodium dodecyl sulfate as studied by fluorescence and two-dimensional NOE NMR spectroscopy. Macromolecules 2008, 41, 1281-1288.
72. Hou, S.-S.; Tzeng, J.-K.; Chuang, M.-H., Intermolecular association and supramolecular structures of PNVF–LiPFN and PVP–LiPFN complexes in the aqueous phase. Soft Matter 2010, 6 (2), 409-415.
73. Lis, M.; Chudzik, K.; Bakierska, M.; Świętosławski, M.; Gajewska, M.; Rutkowska, M.; Molenda, M., Aqueous Binder for Nanostructured Carbon Anode Materials for Li-Ion Batteries. Journal of The Electrochemical Society 2019, 166 (3), A5354-A5361.
74. Bakierska, M.; Molenda, M.; Majda, D.; Dziembaj, R., Functional Starch Based Carbon Aerogels for Energy Applications. Procedia Engineering 2014, 98, 14-19.
75. Liu, H.-S.; Chen, K.-Y.; Fang, C.-E.; Chiu, C.-c., Comparing the effects of polymer binders on Li+ transport near the liquid electrolyte/LiFePO4 interfaces: A molecular dynamics simulation study. Electrochimica Acta 2021, 375.
76. He, Y.-B.; Liu, M.; Huang, Z.-D.; Zhang, B.; Yu, Y.; Li, B.; Kang, F.; Kim, J.-K., Effect of solid electrolyte interface (SEI) film on cyclic performance of Li4Ti5O12 anodes for Li ion batteries. Journal of Power Sources 2013, 239, 269-276.
77. Gieu, J.-B.; Courrèges, C.; Ouatani, L. E.; Tessier, C.; Martinez, H., Influence of Vinylene Carbonate Additive on the Li4Ti5O12 Electrode/Electrolyte Interface for Lithium-Ion Batteries. Journal of The Electrochemical Society 2017, 164 (6), A1314-A1320.
78. Gao, J.; Gong, B.; Zhang, Q.; Wang, G.; Dai, Y.; Fan, W., Study of the surface reaction mechanism of Li4Ti5O12 anode for lithium-ion cells. Ionics 2015, 21 (9), 2409-2416.
79. Björklund, E.; Brandell, D.; Hahlin, M.; Edström, K.; Younesi, R., How the Negative Electrode Influences Interfacial and Electrochemical Properties of LiNi1/3Co1/3Mn1/3O2 Cathodes in Li-Ion Batteries. Journal of The Electrochemical Society 2017, 164 (13), A3054-A3059.
80. Murray, V.; Hall, D. S.; Dahn, J. R., A Guide to Full Coin Cell Making for Academic Researchers. Journal of The Electrochemical Society 2019, 166 (2), A329-A333.
81. Kim, C.-S.; Jeong, K. M.; Kim, K.; Yi, C.-W., Effects of Capacity Ratios between Anode and Cathode on Electrochemical Properties for Lithium Polymer Batteries. Electrochimica Acta 2015, 155, 431-436.
82. Fang, Z.; Peng, J.; Ma, N.; Liang, L.; Gao, H.; Zhou, H.; Jin, X.; Yang, J.; Liu, M.; Du, J.; Li, Q.; Li, X.; Li, L., Preparation and Optimization of New High-Power Nanoscale Li4Ti5O12 Full-Cell System. J Nanosci Nanotechnol 2018, 18 (12), 8232-8239.
83. Wu, H. M.; Belharouak, I.; Deng, H.; Abouimrane, A.; Sun, Y. K.; Amine, K., Development of LiNi0.5Mn1.5O4]/Li4Ti5O12 System with Long Cycle Life. Journal of The Electrochemical Society 2009, 156 (12).
84. Wang, W.; Choi, D.; Yang, Z., Li-Ion Battery with LiFePO4 Cathode and Li4Ti5O12 Anode for Stationary Energy Storage. Metallurgical and Materials Transactions A 2012, 44 (S1), 21-25.
85. Yang, C.-C.; Hu, H.-C.; Lin, S. J.; Chien, W.-C., Electrochemical performance of V-doped spinel Li4Ti5O12/C composite anode in Li-half and Li4Ti5O12/LiFePO4-full cell. Journal of Power Sources 2014, 258, 424-433.
86. Sotomayor, M. E.; Torre-Gamarra, C. d. l.; Levenfeld, B.; Sanchez, J.-Y.; Varez, A.; Kim, G.-T.; Varzi, A.; Passerini, S., Ultra-thick battery electrodes for high gravimetric and volumetric energy density Li-ion batteries. Journal of Power Sources 2019, 437.
87. Carvalho, D. V.; Loeffler, N.; Kim, G. T.; Marinaro, M.; Wohlfahrt-Mehrens, M.; Passerini, S., Study of Water-Based Lithium Titanate Electrode Processing: The Role of pH and Binder Molecular Structure. Polymers (Basel) 2016, 8 (8).
88. Wu, K.; Yang, J.; Liu, Y.; Zhang, Y.; Wang, C.; Xu, J.; Ning, F.; Wang, D., Investigation on gas generation of Li4Ti5O12/LiNi1/3Co1/3Mn1/3O2 cells at elevated temperature. Journal of Power Sources 2013, 237, 285-290.
89. Elgrishi, N.; Rountree, K. J.; McCarthy, B. D.; Rountree, E. S.; Eisenhart, T. T.; Dempsey, J. L., A Practical Beginner’s Guide to Cyclic Voltammetry. Journal of Chemical Education 2017, 95 (2), 197-206.
90. Hernández, H. H. R., A. M. R.; González, J. C. T.; Morán, C. O. G.; Hernández, J. G. M.; Ruiz, A. M.; Hernández, J. M.; Cruz, R. O., Electrochemical Impedance Spectroscopy (EIS): A Review Study of Basic Aspects of the Corrosion Mechanism Applied to Steels. Electrochemical Impedance Spectroscopy, 2020.
91. Hübler, A. C. Z., G.; Clemens, W., Influences of Printing Techniques on the Electrical Performances of Conjugated Polymers for Organic Transistors.
92. Choi, W.; Shin, H.-C.; Kim, J. M.; Choi, J.-Y.; Yoon, W.-S., Modeling and Applications of Electrochemical Impedance Spectroscopy (EIS) for Lithium-ion Batteries. Journal of Electrochemical Science and Technology 2020, 11 (1), 1-13.
93. Nguyen, T. Q.; Breitkopf, C., Determination of Diffusion Coefficients Using Impedance Spectroscopy Data. Journal of The Electrochemical Society 2018, 165 (14), E826-E831.
94. Karuppiah, S.; Franger, S.; Nallathamby, K., Water-Soluble Green Binder for Li4Ti5O12 Anodes: Effect of Binder Choice on Lithium Storage. ChemElectroChem 2018, 5 (2), 343-349.
95. Chauque, S.; Oliva, F. Y.; Cámara, O. R.; Torresi, R. M., Use of poly[ionic liquid] as a conductive binder in lithium ion batteries. Journal of Solid State Electrochemistry 2018, 22 (11), 3589-3596.
96. Han, S.-W.; Kim, S.-J.; Oh, E.-S., Significant Performance Enhancement of Li4Ti5O12 Electrodes Using a Graphene-Polyvinylidene Fluoride Conductive Composite Binder. Journal of The Electrochemical Society 2014, 161 (4), A587-A592.
97. Jakóbczyk, P.; Bartmański, M.; Rudnicka, E., Locust bean gum as green and water-soluble binder for LiFePO4 and Li4Ti5O12 electrodes. Journal of Applied Electrochemistry 2020, 51 (3), 359-371.
98. Tran, B.; Oladeji, I. O.; Wang, Z.; Calderon, J.; Chai, G.; Atherton, D.; Zhai, L., Adhesive PEG-based binder for aqueous fabrication of thick Li4Ti5O12 electrode. Electrochimica Acta 2013, 88, 536-542.
99. Lu, H.; Hagberg, J.; Lindbergh, G.; Cornell, A., Li4Ti5O12 flexible, lightweight electrodes based on cellulose nanofibrils as binder and carbon fibers as current collectors for Li-ion batteries. Nano Energy 2017, 39, 140-150.
100. Ding, M.; Liu, H.; Zhao, X.; Pang, L.; Deng, L.; Li, M., Composite with TiO2 and extension of discharge voltage range for capacity enhancement of a Li4Ti5O12 battery. RSC Advances 2017, 7 (69), 43894-43904.
101. Wang, G. J.; Gao, J.; Fu, L. J.; Zhao, N. H.; Wu, Y. P.; Takamura, T., Preparation and characteristic of carbon-coated Li4Ti5O12 anode material. Journal of Power Sources 2007, 174 (2), 1109-1112.
102. Yang, Y.; Qiao, B.; Yang, X.; Fang, L.; Pan, C.; Song, W.; Hou, H.; Ji, X., Lithium Titanate Tailored by Cathodically Induced Graphene for an Ultrafast Lithium Ion Battery. Advanced Functional Materials 2014, 24 (27), 4349-4356.
103. Yuan, T.; Yu, X.; Cai, R.; Zhou, Y.; Shao, Z., Synthesis of pristine and carbon-coated Li4Ti5O12 and their low-temperature electrochemical performance. Journal of Power Sources 2010, 195 (15), 4997-5004.
104. Wagemaker, M., et al., Li-ion diffusion in the equilibrium nanomorphology of spinel Li4+xTi5O12. The Journal of Physical Chemistry B 2009, 113, 224-230.
105. Wang, Y. Q.; Gu, L.; Guo, Y. G.; Li, H.; He, X. Q.; Tsukimoto, S.; Ikuhara, Y.; Wan, L. J., Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery. J Am Chem Soc 2012, 134 (18), 7874-9.
106. Jow, T. R.; Delp, S. A.; Allen, J. L.; Jones, J.-P.; Smart, M. C., Factors Limiting Li+ Charge Transfer Kinetics in Li-Ion Batteries. Journal of The Electrochemical Society 2018, 165 (2), A361-A367.
校內:2027-07-28公開