| 研究生: |
林育進 Lin, Yu-Chin |
|---|---|
| 論文名稱: |
結合生成式AI與文字探勘之可行性研究-以美髮業為例 Feasibility Study on Combining Generative AI and Text Mining-Case of Hairdressing Industry |
| 指導教授: |
呂執中
Lyu, Jr-Jung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 高階管理碩士在職專班(EMBA) Executive Master of Business Administration (EMBA) |
| 論文出版年: | 2022 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 生成式人工智慧 、文字探勘 、自然語言處理 、顧客推薦 、美髮產業 |
| 外文關鍵詞: | Generative AI, Text Mining, Natural Language Processing, Customer Recommendation, Hairdressing Industry |
| 相關次數: | 點閱:61 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
美髮服務屬於高度互動且情境依賴的產業,顧客的體驗與評論對品牌營運與服務設計具有深遠影響。過往業者多依賴問卷或現場反饋了解顧客需求,然而這類方式不僅耗費人力與時間,也難以即時掌握顧客語意傾向。隨著雲端科技與人工智慧(Artificial Intelligence, AI)技術的進展,業者已可透過數據驅動工具進行非結構化語料的自動分析與推薦生成。特別是生成式人工智慧(Generative AI, GenAI)與文字探勘技術的結合,為顧客互動與行銷溝通帶來嶄新可能。
本研究以A科技公司雲端管理系統所蒐集之3,000筆美髮顧客評論與消費紀錄為語料基礎,透過中文斷詞(CKIP、jieba)、TF-IDF特徵抽取、LDA主題建模與SnowNLP情緒分析,建立顧客語意特徵向量,再分別以LSTM、Transformer、BERT分類器與GPT-2進行模型訓練與生成語句分析,驗證其在個人化推薦與語句生成上的應用可行性。結果顯示,GPT-2微調模型於語境理解與推薦自然度表現最佳(F1-score達0.86),亦獲得設計師實務回饋肯定,表示有助於縮短溝通流程、強化顧客信任,尤其對新手設計師具備輔助價值。
綜合而言,文字探勘模組可有效萃取顧客評論中潛藏的偏好語意與情緒傾向,成為AI推薦系統中理解層的關鍵技術,搭配生成式模型則可即時產出具情境適應性的推薦語句,能支援第一線設計師進行個人化服務溝通。本研究建構之AI整合架構,具備技術成熟度與商業應用潛力,未來可拓展至美容、健身與醫療等高互動服務產業,成為傳統產業智慧轉型的可行方案。
Hairdressing services are characterized by high interactivity and context dependency, where customer experiences and reviews exert significant influence on service design. Traditionally, hairdressing businesses relied on surveys or on-site feedback to understand customer needs. However, such methods are time-consuming, labor-intensive, and often fail to capture customers’ semantic tendencies. With the advancement of cloud computing and artificial intelligence (AI), service providers could leverage data-driven tools to conduct automated analysis and generate recommendations from unstructured textual data. Specifically, the integration of generative AI (GenAI) and text mining techniques for better customer engagement and marketing communication is the main target of this research.
This study develops a general process through Chinese word segmentation (CKIP and jieba), TF-IDF feature extraction, LDA topic modeling, and SnowNLP sentiment analysis, and customer semantic feature vectors could be constructed. These vectors were then used to train and to evaluate sentence generation across four models: LSTM, Transformer, BERT classifier, and GPT-2. Based on 3,000 customer reviews and transaction records collected from the cloud-based management system of a case company, the results demonstrated that the fine-tuned GPT-2 model achieved the best performance in contextual comprehension and naturalness of recommendation (with an F1-score of 0.81), and received positive feedback from professional hair stylists. The findings indicate that text mining modules effectively extract implicit preferences and emotional tendencies embedded in customer reviews. The proposed AI architecture developed in this study demonstrates both technological feasibility and its commercial potential.
一、中文文獻
1.陳志誠(2021)。生成式人工智慧於服務產業應用之探討。資訊管理研究, 28(2), 45–67。
2.吳鏡文、黃怡婷(2023)。連鎖美容平台生態模式分析。美業經營評論, 12(3), 45–60。
3.林泳瀠、廖年淼(2017)。顧客忠誠度與情感連結在美髮設計師服務經營中的角色。美髮管理學報, 8(2), 23–38。
4.Perfect Corp.(2023)。完美公司於 YouCam 導入生成式 AI 髮型推薦功能。取自:https://www.beautypackaging.com/breaking-news/perfect-corp-debuts-generative-ai-technology-for-hairstyle-try-on/
5.台灣區美容美髮商業同業公會全國聯合會(2023)。台灣美容美髮產業概況調查報告。取自:https://www.hair.org.tw
6.王鴻翔(2023)。美髮產業的數位轉型契機與挑戰。商業現代化季刊, 75, 23–30。
7.PwC Taiwan(2024)。台灣服務業 AI 轉型觀察報告。資誠聯合會計師事務所。
8.王鴻翔(2023)。台灣美容美髮產業現況與轉型趨勢。台灣區美容美髮商業同業公會全國聯合會年報。
9.梁仍奇(2016)。美髮業者導入雲端預約系統對營運成效之研究(碩士論文)。國立中山大學資訊管理研究所。
10.李秀妃(2014)。數據分析在美容美髮業行銷決策上的應用(碩士論文)。國立雲林科技大學技術與職業教育研究所。
11.劉育伶、王文甫(2020)。中文自然語言處理在評論分析上的應用探討。語言與資訊學報, 29(1), 55–78。
12.中央研究院詞庫小組(2023)。CKIP 斷詞與語意標註技術。取自:https://ckip.iis.sinica.edu.tw
二、英文文獻
1.Allahyari, M., Pouriyeh, S. A., Assefi, M., Safaei, S., Trippe, E. D., Gutierrez, J. B., & Kochut, K. (2017). A brief survey of text mining: Classification, clustering and extraction techniques. arXiv preprint. https://arxiv.org/abs/1707.02919
2.Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021). On the dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency (FAccT) (pp. 610–623). https://doi.org/10.1145/3442188.3445922
3.Binns, R., Veale, M., Van Kleek, M., & Shadbolt, N. (2018). “It’s reducing a human being to a percentage”: Perceptions of justice in algorithmic decisions. CHI Conference on Human Factors in Computing Systems, 1–14. https://doi.org/10.1145/3173574.3173951
4.Brock, A., Donahue, J., & Simonyan, K. (2019). Large scale GAN training for high fidelity natural image synthesis. International Conference on Learning Representations. https://arxiv.org/abs/1809.11096
5.Brown, T. B., Mann, B., Ryder, N., et al. (2020). Language models are few-shot learners. In Advances in Neural Information Processing Systems (Vol. 33, pp. 1877–1901). https://arxiv.org/abs/2005.14165
6.Cambria, E., Schuller, B., Xia, Y., & Havasi, C. (2013). New avenues in opinion mining and sentiment analysis. IEEE Intelligent Systems, 28(2), 15–21. https://doi.org/10.1109/MIS.2013.30
7.Chen, T., Xu, R., He, Y., & Wang, X. (2017). Improving sentiment analysis via sentence type classification using BiLSTM-CRF and CNN. Expert Systems with Applications, 72, 221–230. https://doi.org/10.1016/j.eswa.2016.10.065
8.Choppadandi, A., Kaur, J., Chenchala, P. K., & Kanungo, S. (2019). AI-driven customer relationship management in PK salon management system. International Journal of Open Publication and Exploration, 7(2), 28–44.
9.Deloitte. (2023). AI in consumer industries: Driving personalization and operational efficiency. Deloitte Insights. Retrieved from https://www2.deloitte.com
10.Dhariwal, P., & Nichol, A. (2021). Diffusion models beat GANs on image synthesis. Advances in Neural Information Processing Systems, 34, 8780–8794. https://arxiv.org/abs/2105.05233
11.Emitrr. (2024). AI for salons: Benefits, use cases & best tool revealed. Retrieved from https://emitrr.com/blog
12.Euromonitor International. (2024). Beauty and personal care market trends. Retrieved from https://www.euromonitor.com
13.Fitzpatrick, K. K., Darcy, A., & Vierhile, M. (2017). Delivering cognitive behavior therapy to young adults with symptoms of depression and anxiety using a fully automated conversational agent (Woebot). JMIR Mental Health, 4(2), e19. https://doi.org/10.2196/mental.7785
14.Floridi, L., & Cowls, J. (2022). The ethics of artificial intelligence: Principles, challenges, and opportunities. Minds and Machines, 32(1), 1–14. https://doi.org/10.1007/s11023-021-09539-2
15.Gartner. (2023). Market guide for AI in retail. Gartner Research. Retrieved from https://www.gartner.com
16.Goodfellow, I., Pouget-Abadie, J., Mirza, M., et al. (2014). Generative adversarial nets. In Advances in Neural Information Processing Systems (Vol. 27, pp. 2672–2680). https://papers.nips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
17.Ho, J., Jain, A., & Abbeel, P. (2020). Denoising diffusion probabilistic models. In Advances in Neural Information Processing Systems. https://arxiv.org/abs/2006.11239
18.Image TechNavio. (2024). Global beauty salon market 2025-2029. Market research report.
19.Jelodar, H., Wang, Y., Yuan, C., Feng, X., Jiang, X., Li, Y., & Zhao, L. (2017). Latent Dirichlet allocation (LDA) and topic modeling: A survey. arXiv preprint. https://arxiv.org/abs/1711.04305
20.Jurafsky, D., & Martin, J. H. (2023). Speech and language processing (3rd ed.). Stanford University. https://web.stanford.edu/~jurafsky/slp3/
21.Khan, S. S., & Alharbi, Y. (2021). Text mining challenges and applications: A comprehensive review. International Journal of Computer Science and Network Security, 20(12), 133–147.
22.Kingma, D. P., & Welling, M. (2014). Auto-encoding variational Bayes. International Conference on Learning Representations. https://arxiv.org/abs/1312.6114
23.Li, J., Hovy, E., & Jurafsky, D. (2018). Neural text style transfer for generating personalized responses. Proceedings of ACL 2018, 3050–3060. https://doi.org/10.18653/v1/P18-1284
24.McKinsey & Company. (2022). The state of AI in 2022—and a half decade in review. Retrieved from https://www.mckinsey.com
25.Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv preprint. https://arxiv.org/abs/1301.3781
26.Mittelstadt, B. D., Allo, P., Taddeo, M., Wachter, S., & Floridi, L. (2016). The ethics of algorithms: Mapping the debate. Big Data & Society, 3(2). https://doi.org/10.1177/2053951716679679
27.Ng, H., Tseng, C. Y., & Chuang, Y. T. (2024). Bridging communication gaps in hairdressing: Generative AI as onboarding assistant. Journal of Service Design, 16(1), 33–48.
28.NielsenIQ. (2024). Consumer behavior shifts in beauty retail. Retrieved from https://nielseniq.com
29.Perfect Corp. (2023). AI-powered beauty solutions for omnichannel retail. Retrieved from https://www.perfectcorp.com/business
30.Radford, A., Wu, J., Child, R., et al. (2019). Language models are unsupervised multitask learners. OpenAI Technical Report. https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
31.Rajkomar, A., Dean, J., & Kohane, I. (2019). Machine learning in medicine. New England Journal of Medicine, 380, 1347–1358. https://doi.org/10.1056/NEJMra1814259
32.Rombach, R., Blattmann, A., Lorenz, D., Esser, P., & Ommer, B. (2022). High-resolution image synthesis with latent diffusion models. CVPR, 10684–10695. https://arxiv.org/abs/2112.10752
33.Salon Today. (2024). The AI revolution in hair salons: From virtual try-on to smart scheduling. Retrieved from https://www.salontoday.com
34.Shneiderman, B. (2020). Human-centered artificial intelligence: Reliable, safe & trustworthy. International Journal of Human–Computer Interaction, 36(6), 495–504. https://doi.org/10.1080/10447318.2020.1741118
35.Sparck Jones, K. (1972). A statistical interpretation of term specificity and its application in retrieval. Journal of Documentation, 28(1), 11–21.
36.Tang, D., Qin, B., & Liu, T. (2015). Document modeling with gated recurrent neural network for sentiment classification. Proceedings of EMNLP 2015, 1422–1432. https://doi.org/10.18653/v1/D15-1167
37.Touvron, H., Lavril, T., Izacard, G., et al. (2023). LLaMA: Open and efficient foundation language models. arXiv preprint. https://arxiv.org/abs/2302.13971
38.Ulta Beauty. (2024). Ulta’s generative AI hair try-on tool helps customers experiment with styles. Retrieved from https://www.digitalcommerce360.com
39.Vaswani, A., Shazeer, N., Parmar, N., et al. (2017). Attention is all you need. In Advances in Neural Information Processing Systems (Vol. 30). https://arxiv.org/abs/1706.03762
40.Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425–478. https://doi.org/10.2307/30036540
41.Vogue Business. (2025). What if robots ran the beauty industry? Retrieved from https://www.voguebusiness.com
42.Xu, L., Wang, Y., & Zhao, P. (2024). Transforming retail experience with LLMs: The future of personalized services. Journal of AI and Society, 11(1), 88–102.
43.Zhang, H., Liu, Y., & Xu, T. (2020). SketchHairSalon: Deep hair modeling from sketches. IEEE Transactions on Visualization and Computer Graphics.
44.Zhou, W., Guo, W., Yang, Y., Sun, F., & Zhang, Y. (2021). ReplyGen: Personalized review response generation using transformers. In Proceedings of the Web Conference 2021 (pp. 2196–2207). https://doi.org/10.1145/3442381.3449886
45.Zhou, Y., Chai, M., Pepe, A., Gross, M., & Beeler, T. (2023). GroomGen: A high-quality generative hair model using hierarchical latent representations. arXiv preprint. https://arxiv.org/abs/2303.11707