| 研究生: |
林子傑 Lin, Tzu-Chieh |
|---|---|
| 論文名稱: |
ACEI 或 ARB 對接受腹膜透析的尿毒症病患腹膜參數之影響 The Effects of ACEI/ARB on Peritoneal Parameters in Uremic Patients on Chronic Peritoneal Dialysis |
| 指導教授: |
程盟夫
Cheng, Meng-fu 高雅慧 Yang, Yea-Huei Kao 高淑敏 Kao, Shu-min |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 臨床藥學研究所 Institute of Clinical Pharmacy |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 腹膜透析 、血管張力素受體阻斷劑 、殘餘腎功能 、心血管疾病 、血管張力素轉換酶抑制劑 |
| 外文關鍵詞: | residual renal function, angiotensin converting enzyme inhibitors, angiotensin II receptor blockers, Peritoneal dialysis, C-reactive protein |
| 相關次數: | 點閱:133 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
末期腎病 (End stage renal disease)病患的死亡率至少是一般民眾的十到二十倍。雖然相較於擁有正常腎功能的族群,慢性腎病和血液或腹膜透析病患有較高Framingham 危險因子盛行率,但越來越多的證據指出 “非傳統危險因子”,主要是指慢性發炎反應,也有可能使得慢性腎病病患的死亡率增加。此外,殘餘腎功能對於透析病患的死亡率亦是一種重要的預測因子;隨著殘餘腎功能下降,死亡率和發炎的嚴重程度會隨之上升,並且對於腹膜透析病患來說,腹膜成為排除毒素的主要途徑。目前已知對於慢性腎病病患來說,血管張力素轉換酶抑制劑(ACEI)與血管張力素受體阻斷劑(ARB)可以延緩殘餘腎功能的下降並且減輕發炎的嚴重程度,但是針對腹膜透析病患的研究並不多。因此本研究針對南台灣成大醫院腹膜透析病患,研究ACEI/ARB對於腹膜透析各項參數的影響,主要包括殘餘腎功能、腹膜功能和發炎反應的程度。本研究共納入102 位自民國92 年至97 年於台南市國立成功大學醫學院附設醫院腎臟科接受長期腹膜透析治療之病患。回溯性檢閱病歷並記錄相關資料,排除透析未滿六個月、使用ACEI/ARB 未滿六個月的病患和臨床資料不完整的病患,總共80 位病患納入分析。雖然記錄五年間之資料,但是平均追蹤時間是兩年半。本研究以SAS 9.1 統計套裝軟體進行各項分析。病患的基本資料以t-test和卡方檢定分析;針對每周腹膜和腎臟肌酸酐清除率、每週平均肌酸酐清除率、尿量、肌酸酐之D/P 值和CRP,運用linear mixed models repeated measure
with unstructured covariance matrix 來分析使用ACEI/ARB 的有無和時間之間的關係。相較於沒有使用ACEI/ARB 的病患,長期使用ACEI/ARB 的病患擁有顯著較緩慢的殘餘腎功能下降速率;雖然在尿量和每週平均肌酸酐清除率的分析中觀察到類似的現象,但是由於過大的標準誤差,使得此兩項分析失去統計學上的差異。
至於每週腹膜肌酸酐清除率方面,有長期使用ACEI/ARB 的病患可以維持甚至在追蹤兩年之後顯著的提升。相反地,沒有使用ACEI/ARB 的病患,在追蹤期間並沒有顯著的變化,甚至在追蹤兩年之後呈現下降的趨勢。目前還無法清楚看到ACEI/ARB 對於肌酸酐之D/P 值的影響,兩組腹膜透析的病患都在低平均到高平均的範圍中,代表皆有良好的預後。在對照組之中,肌酸酐之D/P 值並沒有顯著的變化,但是治療組的肌酸酐之D/P 值卻顯著地從低平均移動到高平均。在CRP 的分析方面,長期使用ACEI/ARB的病患,相較於對照組,擁有較低的CRP 值,而且此現象在非糖尿病患中更為顯著。
因此,本研究證實末期腎病病患新進入腹膜透析並且擁有殘餘腎功能者,長期使用ACEI/ARB 可以顯著地降低殘餘腎功能下降的速率、維持腹膜肌酸酐清除率、顯著地降低CRP 值,並且至少對於腹膜不會有不好的影響。因此針對此一族群,使用ACEI/ARB 是合理的選擇。
Background: Mortality among end stage renal disease patients (ESRD) is at least 10~20 times than general population. Although a greater prevalence of traditional Framingham risk factors has been observed in chronic kidney disease (CKD) patients and in patients on hemodialysis or peritoneal dialysis as compared with patients having normal kidney function, accumulating evidences indicated that “non-traditional risk factors”, mainly chronic inflammation, also predispose CKD patients an increased risk of mortality. Furthermore, residual renal function (RRF) is a strong predictor toward mortality in dialysis patients; as the decline of residual renal function, elevated mortality rate and inflammatory
state can be found and the function of peritoneal membrane becomes the life line of PD patient. It’s already known ACEI/ARB can slow the decline rate of RRF and have anti-inflammatory properties in CKD patients, but studies focus on PD patients are still lacking. Our study focused on the effects of ACEI/ARB on peritoneal parameters, including residual renal and peritoneal function at National Cheng Kung University Hospital in southern Taiwan.
Method: Clinical data and medical treatments were extracted from charts of 80 PD patients between 2003 and 2008. We excluded patients receiving PD less than 6 months, using ACEI/ARB less than 6 months and with incomplete data. Weekly renal and peritoneal creatinine clearance (CCr), total weekly CCr, urine volume, dialysate to plasma ratio for creatinine (D/P Cr) and inflammatory state were compared between patients treated with/without ACEI/ARB. Although we collected 5 years’ data, but the average follow-up duration is 2.5 years. Statistical analysis: We analyzed the data with adequate standard statistical method by statistical software SAS 9.1. Baseline characteristics were handled by t-test and Chi squared test; Weekly renal and peritoneal CCr, total weekly CCr, urine volume, D/P Cr and c-reactive protein (CRP) level were assessed by linear mixed models repeated measure with unstructured covariance matrix to analyze
the effect of treatment and time on patients.
Results: Compared with the control group, PD patients used ACEI/ARB could significantly reduce the decline rate of RRF, although slower decline rate was seen in urine volume and total weekly CCr of PD patients taking ACEI/ARB, it
lost statistical significance due to large standard error. As for weekly peritoneal CCr, patients taking ACEI/ARB could maintain and even significantly increase in PWCCr at second year after the start of follow-up. On the contrary, PWCCr in the control group did not have significant change and even presented a decreased pattern. It’s not clear of the role of ACEI/ARB in D/P Cr. Both groups of PD
patients were in the range from low average (LA) to high average (HA) transporters, which have better prognosis. There was no significant change of D/P Cr in the control group, but the intervention group was significantly moving
from LA to HA. Regarding to CRP value, using of ACEI/ARB could lower the CRP level, especially in non-DM patients. Conclusion: For ESRD patients new to PD with residual renal function, ACEI/ARB can preserve their residual renal function, maintain their peritoneal clearance, lower the inflammatory state, and at least do not have detrimental
effects on peritoneal membrane, so it’s rational to use ACEI/ARB in this patient group.
1. Wang AY WM, Woo J, Lam CW, Lui SF, Li PK, et al. Inflammation, residual kidney function, and cardiac hypertrophy are interrelated and combine adversely to enhance mortality and cardiovascular death risk of peritoneal dialysis patients. J Am Soc Nephrol 2004;15:2186-94.
2. Stamatiadis D, Papaioannou MG, Giamarellos-Bourboulis EJ, Marinaki S, Giamarellou H, Stathakis CP. Pharmacokinetics of teicoplanin in patients undergoing continuous ambulatory peritoneal dialysis. Perit Dial Int 2003;23:127-31.
3. Suzuki H, Kanno Y, Sugahara S, Okada H, Nakamoto H. Effects of an angiotensin II receptor blocker, valsartan, on residual renal function in patients on CAPD. Am J Kidney Dis 2004;43:1056-64.
4. Kolesnyk I. Impact of ACE Inhibitors and AII Receptors Blockers on Peritoneal Membrane Transport Characteristics in Long-Term Peritoneal Dialysis Patients. Peritoneal Dialysis International 2007;27.
5. 台灣腎臟醫學會. ESRD report. 2005.
6. USRDS. Annual Data Report, Altas of Chronic kidney Disease & End-stage Renal Disease in the United States. 2007.
7. Kalantar-Zadeh K BG, Humphreys MH, Kopple JD. Reverse epidemiology of cardiovascular risk factors in maintenance dialysis patients. Kidney Int 2003;63:793-808.
8. Kalantar-Zadeh K AK, Salahudeen AK, et al. Survival advantages of obesity in dialysis patients. Am J Clin Nutr 2005;81:543-54.
9. Wang AY, Lai KN. The importance of residual renal function in dialysis patients. Kidney Int 2006;69:1726-32.
10. Shlipak MG FL, Cushman M et al. Cardiovascular mortality risk in chronic kidney disease: Comparison of traditional and novel risk factors. JAMA 2005;293:1737–45.
11. Landray MJ WD, Lip GY et al. Inflammation, endothelial dysfunction, and platelet activation in patients with chronic kidney disease: The chronic renal impairment in Birmingham (CRIB) study. Am J Kidney Dis 2004;43:244-53.
12. Sarnak MJ PA, Wang SR et al. Serum C-reactive protein and leptin as predictors of kidney disease in the modification of diet in renal disease study. Kidney Int 2002;62:2208-15.
13. Tonelli M SF, Pfeffer M et al. Biomarkers of inflammation and progression of chronic kidney disease. Kidney Int 2005;68:237-45.
14. Menon V GT, Wang X et al. C-reactive protein and albumin as predictors of all-cause and cardiovascular mortality in chronic kidney disease. Kidney Int 2005;68:766-72.
15. Yeun JY LR, Mantadilok V, Kaysen GA. C-reactive protein predicts all-cause and cardiovascular mortality in hemodialysis patients. Am J Kidney Dis 2000;35:469-76.
16. Zimmermann J HS, Pruy A, Metzger T, Wanner C. Inflammation enhances cardiovascular risk and mortality in hemodialysis patients. Kidney Int 1999;55:648-58.
17. Iseki K TM, Yoshi S, Fukiyama K. Serum C-reactive (CRP) and risk of death in chronic dialysis patients. Nephrol DialTranspl 1999;14:1956-60.
18. Ducloux D B-VC, Kribs M, Abdelfatah A, Chalopin J-M. C-reactive protein and cardiovascular disease in peritoneal dialysis patients. Kidney Int 2002;62:1417-22.
19. Herzig KA PD, Chang W et al. Is C-reactive protein a useful predictor of outcome in peritoneal dialysis patients? J Am Soc Nephrol DialTranspl 2001;12:814-21.
20. Wang AY LC, Wang M, Woo J, Chan IH, Lui SF, et al. Circulating soluble vascular cell adhesion molecule 1: relationships with residual renal function, cardiac hypertrophy, and outcome of peritoneal dialysis patients. Am J Kidney Dis 2005;45:715-29.
21. Panichi V MU, Taccola D, Migliori M, Rizza GM, Consani C, et al. Interleukin-6 is a stronger predictor of total and cardiovascular mortality than C-reactive protein in haemodialysis patients. Nephrol Dial Transplant 2004;19:1154-60.
22. Pecoits–Filho R BP, Lindholm B, Heimbürger O, Stenvinkel P. Interleukin-6 is an independent predictor of mortality in patients starting dialysis treatment. Nephrol Dial Transplant 2002;17:1684-8.
23. Rao M GD, Perianayagam MC, Tighiouart H, Jaber BL, Pereira BJ, et al. Plasma interleukin-6 predicts cardiovascular mortality in hemodialysis patients. Am J Kidney Dis 2005;45:324-33.
24. Tripepi G MF, Zoccali C. Inflammation markers, adhesion molecules, and all-cause and cardiovascular mortality in patients with ESRD: searching for the best risk marker by multivariate modeling. J Am Soc Nephrol 2005;16(Suppl 1):S83-8.
25. Honda H QA, Heimbürger O, Bárány P, Wang K, Pecoits–Filho R, et al. Serum albumin, C-reactive protein, interleukin 6, and fetuin a as predictors of malnutrition, cardiovascular disease, and mortality in patients with ESRD. Am J Kidney Dis 2006;47:139-48.
26. Mircescu G. Oxidative Stress: An Accomplice to Uremic Toxicity? Journal of Renal Nutrition 2006;16:194-8.
27. Maggi E BR, Falaschi F, et al. Enhanced LDL oxidation in uremic patients: an additional mechanism for accelerated atherosclerosis? Kidney Int 1994;45:876-83.
28. Himmelfarb J, Hakim RM. Oxidative stress in uremia. [Review] [45 refs]. Current Opinion in Nephrology & Hypertension 2003;12:593-8.
29. Nguyen-Khoa T MZ, Pascal De Bandt J, et al. Oxidative stress and haemodialysis: role of inflammation and duration of dialysis treatment. Nephrol Dial Transplant 2001;16:335-40.
30. Handelman GJ WM, Adhikarla R, et al. Elevated plasma F2-isoprostanes in patients on long-term hemodialysis. Kidney Int 2001;51:1960-6.
31. Ikizler TA MJ, Roberts LJ, et al. Plasma F2 isoprostane levels are elevated in chronic hemodialysis patients. Clin Nephrol 2002;88:190-7.
32. Schindler R DC, Koch KM. Angiotensin-converting enzyme inhibitors suppress synthesis of tumor necrosis factor and interleukin 1 by human peripheral blood mononuclear cells. Cytokine 1995;7:526-33.
33. Fukuzawa M SJ, Sagara M, Muto G, Muto Y, Nishimura S, Miyagudri S, Qfang X, Sakata Y, Nakazawa T, Ikehata F, Ohta S, Toyota T. Angiotensin-converting enzyme inhibitors suppress production of tumor necrosis factor-alpha in vitro and in vivo. Immunopharmacology 1997;36:49-55.
34. Gullestad L AP, Ueland T, Espevik T, Yee G, Vagelos R, Froland SS, Fowler M. Effect of high- versus low-dose angiotensin converting enzyme inhibition on cytokine levels in chronic heart failure. Am Coll Cardiol 1999;34:2061-7.
35. Tsutamoto T WA, Maeda K, Mabuchi N, Hayashi M, Tsutsui T, OhnishiM, SawakiM,FujiiM,Matsumoti T,KinashitaM. Angiotensin II type 1 receptor antagonists decreases plasma levels of tumor necrosis factor alpha, interleukin-6 and soluble adhesionmolecules in patients with chronic heart failure. J Am Coll Cardiol 2000;35:714-21.
36. StenvinkelP AA, WangT,LindholmB, Bergstro¨mJ, Palmblad J, Heimbu¨ rger O, CederholmT. Do ACE-inhibitors suppress tumor necrosis factor-a production in advanced chronic renal failure? J Intern Med 1999;246:503-7.
37. Schwedler SB MT, Schinzel R, et al. Advanced glycation end products and mortality in hemodialysis patients. Kidney Int 2002;62:301-10.
38. Bayés B C-PM, Bonal J, et al. Homocysteine, C-reactive protein, lipid peroxidation and mortality in haemodialysis patients. Nephrol Dial Transplant 2003;18:106-12.
39. Busch M FS, Müller A, et al. Potential cardiovascular risk factors in chronic kidney disease: AGEs, total homocysteine and metabolites, and the C-reactive protein. Kidney Int 2004;66:338-47.
40. Stenvinkel P DU, Lindholm B, et al. Phospholipid plasmalogen, a surrogate marker of oxidative stress, is associated with increased cardiovascular mortality in patients on renal replacement therapy. Nephrol Dial Transplant 2004;19.
41. Descamps-Latscha B W-SV, Nguyen-Khoa T, et al. Advanced oxidation protein products as risk factors for atherosclerotic cardiovascular events in nondiabetic predialysis patients. Am J Kidney Dis 2005;45:39-47.
42. Tsimikas S ED, Brilakis S, et al. Oxidized phospholipids, Lp(a) lipoprotein, and coronary artery disease. N Engl J Med 2005;353:46-57.
43. Wang AY WJ, Wang M et al. Important differentiation of factors that predict outcome in peritoneal dialysis patients with different degrees of residual renal function. Nephrol Dial Transplant 2005;20:396-403.
44. Maiorca R BG, Zubani R et al. Predictive value of dialysis adequacy and nutritional indices for mortality and morbidity in CAPD and HD patients. Nephrol Dial Transplant 1995;10:2295-305.
45. Rocco M SJ, Pastan S, McClellan WM. Peritoneal dialysis adequacy and risk of death. Kidney Int 2000;58:446-57.
46. Adequacy of dialysis and nutrition in continuous peritoneal dialysis: association with clinical outcomes. Canada–USA (CANUSA) Peritoneal Dialysis Study Group. J Am Soc Nephrol 1996;7:198-207.
47. Bargman JM TK, Churchill DN. Relative contribution of residual renal function and peritoneal clearance to adequacy of dialysis: a reanalysis of the CANUSA study. J Am Soc Nephrol 2001;12:2158-62.
48. Shemin D BA, Laliberty P, Dworkin LD. Residual renal function and mortality risk in hemodialysis patients. Am J Kidney Dis 2001;38.
49. Termorshuizen F DF, van Manen JG et al. Relative contribution of residual renal function and different measures of adequacy to survival in hemodialysis patients: an analysis of the Netherlands Cooperative Study on the Adequacy of Dialysis (NECOSAD)-2. J Am Soc Nephrol 2004;15:1061-70.
50. Paniagua R AD, Vonesh E et al. Effects of increased peritoneal clearances on mortality rates in peritoneal dialysis: ADEMEX, a prospective, randomized, controlled trial. J Am Soc Nephrol 2002;13:1307-20.
51. Piraino B BG, Bernardini J, Boeschoten E, Gupta A, Holmes C, et al. Peritoneal dialysis–related infections recommendations: 2005 update. Perit Dial Int 2005;25:107-31.
52. Lui SL CS, Ng F, Ng SY, Wan KM, Yip T, et al. Cefazolin plus netilmicin versus cefazolin plus ceftazidime for treating CAPD peritonitis: effect on residual renal function. Kidney Int 2005;68:2375-80.
53. MA. B. Contrast medium-induced nephropathy: critical review of the existing clinical evidence. Nephrol Dial Transplant 2005;20(Suppl 1):12- 7.
54. Dittrich E PH, Schillinger M, Lang I, Stefenelli T, Horl WH, et al. Effect of radio contrast media on residual renal function in peritoneal dialysis patients—a prospective study. Nephrol Dial Transplant 2006;21:1344-9.
55. Moranne O WS, Pagniez D, Dequiedt P, Boulanger E. Effect of iodinated contrast agents on residual renal function in PD patients. Nephrol Dial Transplant 2006;21:1040-5.
56. (K/DOQI). KDOQI. K/DOQI clinical practice guidelines on hypertension and antihypertensive agents in chronic kidney disease. Am J Kidney Dis 2004;43(Suppl 1):S1-290.
57. Jansen MA HA, Korevaar JC, Dekker FW, Boeschoten EW, Krediet RT. Predictors of the rate of decline of residual renal function in incident dialysis patients. Kidney Int 2002;62:1042-53.
58. Menon MK ND, Bargman JM, Vas SI, Oreopoulos DG. Long-term blood pressure control in a cohort of peritoneal dialysis patients and its association with residual renal function. Nephrol Dial Transplant 2001;16:2207-13.
59. J S. Cytokine actions of angiotensin II. Circ Res 2000;86:1187-89.
60. Lewis E HL, Clarke W, et al, for the Collaborative Study Group. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med 2001;345:851-60.
61. Diaz-Buxo JA LE, Lew NL, Zhang SM, Zhu X, Lazarus JM. Associates of mortality among peritoneal dialysis patients with special reference to peritoneal transport rates and solute clearance. Am J Kidney Dis 1999;33:523-4.
62. Williams JD CK, Topley N, et al., Peritoneal Biopsy Study Group. Morphologic changes in the peritoneal membrane of patients with renal disease. J Am Soc Nephrol 2002;13:470-9.
63. Davies SJ PL, Naish PF, Russell GI. Peritoneal glucose exposure and changes in membrane solute transport with time on peritoneal dialysis. J Am Soc Nephrol 2001;12:1046-51.
64. M. F. Buffers: bicarbonate, lactate and pyruvate. Kidney Int 1996;56(Suppl):S75-S80.
65. Di Paolo N SG. Peritoneal vascular changes in continuous ambulatory peritoneal dialysis (CAPD): an in vivo model for the study of microangiopathy. Perit Dial Bull 1985;9:41-5.
66. Ha H CM, Choi HN, Lee HB. Effects of peritoneal dialysis solutions on the secretion of growth factors and extracellular matrix proteins by human peritoneal mesothelial cells. Periton Dial Int 2002;22:171-7.
67. Lee HB YM, Song JS, Ha H. Reactive oxygen species amplify protein kinase C signaling in high glucose-induced fibronectin expression by peritoneal mesothelial cells. Kidney Int 2004;65:1170-9.
68. CM. H. In vitro biocompatibility performance of physioneal. Kidney Int Suppl 2003;88:s57-s74.
69. Witowski J JA, Korybalska K et al. Glucose degradation products in peritoneal dialysis fluids: do they harm? Kidney Int Suppl 2003;84:s148-s51.
70. M P. Chemistry of glucose and biochemical pathways of biological interest. Perit Dial Int 2000;20(Suppl 2):s26-s30.
71. Krediet RT ZM, van der Wal AC et al. Neoangiogenesis in the peritoneal membrane. Perit Dial Int 2000;20(Suppl 2):s19-s25.
72. Taylor GS PV, Spencer S et al. Long-term use of 1.1% amino acid dialysis solution in hypoalbuminemic continuous ambulatory peritoneal dialysis patients. Clin Nephrol 2002;58:445-50.
73. Noh H HH, Yu MR et al. Angiotensin II mediates high glucose-induced TGF-b1 and fibronectin upregulation in HPMC through reactive oxygen species. Periton Dial Int 2005;25:38-47.
74. Noh H, Kim JS, Han KH, et al. Oxidative stress during peritoneal dialysis: implications in functional and structural changes in the membrane. Kidney International 2006;69:2022-8.
75. Prichard S. Will peritoneal dialysis be left behind? Semin Dial 2005;18:167-70.
76. Pecoits-Filho R HO, Barany P et al. Associations between circulating inflammatory markers and residual renal function in CRF patients. Am J Kidney Dis 2003;41:1212-8.
77. Stenvinkel P. Inflammation in end-stage renal disease: the hidden enemy. Nephrology (Carlton) 2006;11:36-41.
78. Wang AY, Woo J, Wang M, et al. Important differentiation of factors that predict outcome in peritoneal dialysis patients with different degrees of residual renal function.[see comment]. Nephrology Dialysis Transplantation 2005;20:396-403.
79. McIntyre CW. Update on peritoneal dialysis solutions. [Review] [47 refs]. Kidney International 2007;71:486-90.
80. Wiggins KJ, Craig JC, Johnson DW, Strippoli GF. Treatment for peritoneal dialysis-associated peritonitis. [Review] [105 refs]. Cochrane Database of Systematic Reviews 2008:CD005284.
81. Piraino B. PERITONEAL DIALYSIS-RELATED INFECTIONS RECOMMENDATIONS: 2005 UPDATE. Peritoneal Dialysis International 2005;25.
82. Zaidenstein R, Weissgarten J, Dishi V, et al. Pharmacokinetics of intraperitoneal piperacillin/tazobactam in patients on peritoneal dialysis with and without pseudomonas peritonitis. Peritoneal Dialysis International 2000;20:227-31.
83. Chan CY, Lai KN, Lam AW, Li PK, Chung WW, French GL. Pharmacokinetics of parenteral imipenem/cilastatin in patients on continuous ambulatory peritoneal dialysis. Journal of Antimicrobial Chemotherapy 1991;27:225-32.
84. Merchant MR, Anwar N, Were A, Uttley L, Tooth JA, Gokal R. Imipenem versus netilmicin and vancomycin in the treatment of CAPD peritonitis. Adv Perit Dial 1992;8:234-7.
85. Erkan Dervisoglu ZYaIY. Citrobacter freundii peritonitis and tunnel infection
in a patient on continuous ambulatory peritoneal
dialysis. Journal of Medical Microbiology 2008;57:125-7.
86. Kobayashi K, Nakamoto H, Okada S, et al. Efficacy and safety of meropenem plus tobramycin followed by meropenem plus vancomycin for treating peritonitis in patients on continuous ambulatory peritoneal dialysis. Adv Perit Dial 2006;22:65-8.
87. Pasadakis P, Thodis E, Euthimiadou A, et al. Treatment of CAPD peritonitis with clavulanate potentiated ticarcillin. Advances in Peritoneal Dialysis 1992;8:238-41.
88. Tang S, Cheng CC, Tse KC, et al. CAPD-associated peritonitis caused by Alcaligenes xylosoxidans sp. xylosoxidans. Am J Nephrol 2001;21:502-6.
89. Finch RC, Holliday AP, Innes A, et al. Pharmacokinetic behavior of intraperitoneal teicoplanin during treatment of peritonitis complicating continuous ambulatory peritoneal dialysis. Antimicrob Agents Chemother 1996;40:1971-2.
90. Bayston R AM, Rigg K, Shelton A. Recurrent infection and catheter loss in patients on continuous ambulatory peritoneal dialysis. Perit Dial Int 1999;19:550-5.
91. Szeto C CK, Leung C, Wong TY, Wu AK, Wang AY, Lui S, Li PK. Clinical course of peritonitis due to Pseudomonas species complicating peritoneal dialysis: A review of 104 cases. Kidney Int 2001;59:2309-15.
92. Bernardini J. Randomized, Double-Blind Trial of Antibiotic Exit Site Cream for Prevention of Exit Site Infection in Peritoneal Dialysis Patients. J Am Soc Nephrol 2005;16:539-45.
93. CE C. Gentamicin. Med Clin North Am 1970;54:1310.