簡易檢索 / 詳目顯示

研究生: 劉蓓雯
Liu, Pei-Wen
論文名稱: 食品汙染物單氯丙二醇及縮水甘油誘發腎臟毒性機轉並開發預防策略之研究
A study of preventive strategy and the mechanism of renal toxicity induced by food contaminants 3-MCPD and Glycidol
指導教授: 陳容甄
Chen, Rong-Jane
學位類別: 碩士
Master
系所名稱: 醫學院 - 食品安全衛生暨風險管理研究所
Department of Food Safety / Hygiene and Risk Management
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 100
中文關鍵詞: 單氯丙二醇縮水甘油粒腺體細胞死亡紫檀芪
外文關鍵詞: 3-MCPD, Glycidol, mitochondria, cell death, pterostilbene
相關次數: 點閱:81下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來不斷爆發食安問題,飲食中的食品汙染物可能會引起人類疾病及癌症的產生,精製食用油加工過程會產生高含量的食品汙染物單氯丙二醇(3-MCPD)及縮水甘油(Glycidol)。動物實驗結果證實,長期攝取高劑量3-MCPD及Glycidol可能會造成腎臟損傷。而細胞實驗發現,3-MCPD及Glycidol引起的腎毒性可能是經由損傷粒腺體氧化磷酸化系統,並誘導細胞凋亡造成細胞傷害,且最近研究發現越來越多新的細胞死亡類型與粒腺體損傷有關。因此,本研究的目的為探討單獨或合併處理3-MCPD及Glycidol是否會經由粒腺體功能受損及活化NLRP3發炎體、pyroptosis、自噬作用、necroptosis及ferroptosis等多種細胞死亡模式來造成腎臟損傷。3-MCPD及Glycidol已被證實同時存在於汙染的食品中,而共同暴露是否具有協同作用且毒性機轉仍不清楚。因此,我們利用動物、細胞實驗以及次世代基因體定序分析,以了解3-MCPD、Glycidol單獨或共同暴露下造成腎臟損傷之分子機轉,並評估紫檀芪預防3-MCPD及Glycidol造成腎臟損傷之效果及機制。
    本研究使用C57BL/6小鼠單獨或合併管餵28天的3-MCPD (10、25、50、75及100 mg/kg)、Glycidol(10、25、50、100及150 mg/kg)或紫檀芪(200mg/kg),採取其腎臟組織進行H&E染色及免疫組織化學染色以觀察腎臟毒性及紫檀芪預防效果,且利用腎臟組織進行次世代基因體定序分析,以了解3-MCPD或Glycidol單獨或共同暴露並合併紫檀芪下造成腎臟損傷及天然物預防之分子機轉。在細胞實驗中,使用大鼠腎小管上皮細胞(NRK-52E)單獨或合併處理3-MCPD、Glycidol或紫檀芪。利用MTT分析細胞存活率,以流式細胞儀觀察粒腺體損傷及細胞死亡現象,並使用乳酸脫氫酶分析套組及西方墨點法來檢測發炎體活化、pyroptosis、necroptosis、ferroptosis及自噬作用相關機制。
    在動物實驗中,高劑量3-MCPD(M75和M100)或合併Glycidol(M+G)的組別中,具有體重下降及相對腎臟重量上升的情形。組織病理學結果發現,經由3-MCPD及Glycidol處理的腎臟組織具有腎小管變性、擴張及壞死等現象,次世代定序結果中發現共同暴露組別影響發炎及細胞週期相關路徑且在組織免疫化學染色法會誘導自噬作用的產生。在預防策略的動物模式中,給予天然物紫檀芪可有效緩解3-MCPD及Glycidol所造成的腎毒性。在生化分析及組織病理學的結果中可以看到,處理低劑量的3-MCPD或Glycidol結合紫檀芪可有效地降低血清及尿液中的腎臟指標且並未觀察到腎小管擴張及變性等情形。
    在體外試驗中,NRK-52E細胞處理3-MCPD或Glycidol後,其存活率顯著下降並具有劑量效應關係。給予細胞3-MCPD或Glycidol造成粒腺體膜電位下降且在處理 24、48及72小時後,可觀察到NLRP3發炎體、pyroptosis、necroptosis、ferroptosis及細胞自噬相關蛋白的表現量上升,證實3-MCPD或Glycidol所造成的腎臟損傷是由粒腺體受損及多種細胞死亡共同調節的。為了模擬3-MCPD及Glycidol同時存在於汙染的食品中,將細胞共同暴露於3-MCPD和Glycidol進行協同效應的分析,且透過西方墨點法及免疫螢光染色探討共同暴露會誘導自體吞噬及necroptosis的細胞死亡模式來造成腎毒性。綜合上述實驗結果,本研究證實3-MCPD及Glycidol單獨或共同暴露造成腎臟損傷與粒腺體功能受損及多種細胞死亡共同調節有關,而在預防策略中,天然物紫檀芪可以有效減緩3-MCPD及Glycidol的腎毒性。

    Refined edible oil produces high amounts of food contaminants such as 3-monochloropropanediol (3-MCPD) and Glycidol during processing. Previous animal studies have demonstrated the renal damage could be induced by chronic ingestion with high doses of 3-MCPD and Glycidol. The mechanistical studies have shown that nephrotoxicity induced by 3-MCPD and Glycidol is partially through damage the oxidative phosphorylation system of mitochondria leading to induced apoptosis cell death. An increasing number of cell death types has been discovered in response to mitochondria damage. Thus, we aim to study the cell death mechanisms of renal damage after 3-MCPD and Glycidol treatment alone or in combination in vitro and in vivo. Through the established animal, cell models and the NGS results in our study, we can provide the renal toxicity evidences of 3-MCPD combined with Glycidol and the natural compound pterostilbene for studying the preventive targets for renal diseases. In the in vivo study, we demonstrate that 3-MCPD and Glycidol significantly induce the renal toxicity in C57BL/6 mice. Interestingly, the co-exposure of 3-MCPD and Glycidol significantly induced synergistic toxic effects of renal in animal models. In the preventive model, pterostilbene (PT) could significantly alleviated renal toxicity induced by 3-MCPD or Glycidol. We suggest that PT could be an effective agent for reducing renal toxicity induced by food contaminants. In the in vitro study, we indicate that 3-MCPD and Glycidol significantly induced cytotoxicity in NRK-52E cells. 3-MCPD and Glycidol treatment induced NLRP3 inflammasome, pyroptosis, necroptosis and ferroptosis in renal cells. The synergistic toxic effects of 3-MCPD and Glycidol showed significantly increased in autophagic cell death. In conclusion, we suggest the molecular mechanisms of renal toxicity caused by 3-MCPD and Glycidol treatment alone or in combination via mitochondrial damage and induction of pyroptosis, ferroptosis, necroptosis and autophagy.

    中文摘要 I 英文摘要 III 第一章、序論 1 第二章、文獻回顧 2 第一節、食品汙染物單氯丙二醇(3-MCPD)及縮水甘油(Glycidol) 2 第二節、透過次世代定序分析釐清複雜之腎臟損傷機制 6 第三節、粒腺體及NLRP3發炎體活化 8 第四節、 程序性細胞死亡 (Programmed cell death) 10 (一) 細胞凋亡 (Apoptosis) 10 (二) 自噬作用 (Autophagy) 11 (三) 發炎性細胞凋亡 (Pyroptosis) 12 (四) 鐵依賴性細胞凋亡 (Ferroptosis) 13 (五) 壞死性細胞凋亡 (Necroptosis) 14 第五節、 紫檀芪 (Pterostillbene) 16 第三章、研究目的 17 第四章、研究材料與方法 18 第一節 研究材料 18 (一) 細胞株: 18 (二) 儀器: 18 (三) 試劑與耗材: 19 第二節 研究方法與實驗步驟 22 (一) 動物實驗: 22 1. 動物飼育管理 22 2. 動物馴化及檢疫 22 3. 【毒性試驗動物模式】 23 4. 【預防策略動物模式】 23 5. 血球分析 23 6. 生化值分析 23 7. Creatinine和BUN清除率計算 24 8. 尿酸分析 24 9. 尿液KIM-1分析 24 10. 蘇木紫伊紅染色(Hematoxylin & Eosin Staining) 24 11. 纖維化染色法Masson’s Trichrome Stain 25 12. 免疫組織化學染色法(immunohistochemistry, IHC) 25 13. 次世代定序分析 26 (二) 細胞實驗: 26 1. 細胞解凍 27 2. 細胞冷凍 27 3. 細胞培養(Cell culture) 27 4. 細胞存活率(Cell viability) 28 5. 協同效應分析 (Synergistic interaction) 28 6. 粒腺體膜電位 (Mitochondria membrane potential, MMP)分析 28 7. LDH assay 28 8. 細胞凋亡分析(Apoptosis assay) 28 9. 自噬作用分析(Autophagy assay) 29 10. 免疫螢光染色(Immunofluorescence) 29 11. 西方墨點法(Western blot) 30 12. 統計分析 31 第五章、研究架構 32 第六章、實驗結果 35 第一節、食品汙染物3-MCPD及Glycidol單獨或共同暴露之毒性試驗動物模式 35 第二節、食品汙染物3-MCPD及Glycidol誘導C57BL/6小鼠腎臟損傷 36 第三節、利用次世代基因分析,釐清複雜之腎臟損傷機制 38 第四節、大鼠腎小管上皮細胞NRK-52E Cells暴露於食品汙染物3-MCPD及Glycidol所誘導的細胞毒殺效應並分析協同作用 39 第五節、食品汙染物3-MCPD及Glycidol造成NRK-52E細胞粒腺體功能受損、NLRP3發炎體活化及發炎性細胞凋亡 (Pyroptosis) 40 第六節、食品汙染物3-MCPD及Glycidol造成NRK-52E細胞誘導鐵依賴性細胞死亡 (Ferroptosis) 42 第七節、食品汙染物3-MCPD及Glycidol造成NRK-52E細胞誘導壞死性細胞凋亡(Necroptosis) 43 第八節、食品汙染物3-MCPD及Glycidol造成NRK-52E細胞引起自噬 (Autophagy) 作用的細胞死亡 44 第九節、天然物紫檀芪 (Pterostillbene) 合併食品汙染物3-MCPD及Glycidol減緩腎毒性之預防策略動物模式 46 第七章、討論 48 第八章、結論及建議 57 第九章、參考文獻 59

    Abou-Ghali M, Stiban J. 2015. Regulation of ceramide channel formation and disassembly: Insights on the initiation of apoptosis. Saudi Journal of Biological Sciences 22:760-772.
    Anders HJ. 2018. Necroptosis in acute kidney injury. Nephron 139:342-348.
    Anders HJ, Suarez-Alvarez B, Grigorescu M, Foresto-Neto O, Steiger S, Desai J, et al. 2018. The macrophage phenotype and inflammasome component nlrp3 contributes to nephrocalcinosis-related chronic kidney disease independent from il-1-mediated tissue injury. Kidney International 93:656-669.
    Andres S, Appel KE, Lampen A. 2013. Toxicology, occurrence and risk characterisation of the chloropropanols in food: 2-monochloro-1,3-propanediol, 1,3-dichloro-2-propanol and 2,3-dichloro-1-propanol. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 58:467-478.
    Bakhiya N, Abraham K, Gurtler R, Appel KE, Lampen A. 2011. Toxicological assessment of 3-chloropropane-1,2-diol and glycidol fatty acid esters in food. Mol Nutr Food Res 55:509-521.
    Book. 2014. Food safety chemistry: Toxicant occurrence, analysis and mitigation.
    Braeuning A, Sawada S, Oberemm A, Lampen A. 2015. Analysis of 3-mcpd- and 3-mcpd dipalmitate-induced proteomic changes in rat liver. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 86:374-384.
    Buhrke T, Weisshaar R, Lampen A. 2011. Absorption and metabolism of the food contaminant 3-chloro-1,2-propanediol (3-mcpd) and its fatty acid esters by human intestinal caco-2 cells. Archives of toxicology 85:1201-1208.
    Buhrke T, Schultrich K, Braeuning A, Lampen A. 2017. Comparative analysis of transcriptomic responses to repeated-dose exposure to 2-mcpd and 3-mcpd in rat kidney, liver and testis. Food and Chemical Toxicology 106:36-46.
    Buhrke T, Voss L, Briese A, Stephanowitz H, Krause E, Braeuning A, et al. 2018. Oxidative inactivation of the endogenous antioxidant protein dj-1 by the food contaminants 3-mcpd and 2-mcpd. Archives of toxicology 92:289-299.
    Chen RJ, Lee YH, Yeh YL, Wu WS, Ho CT, Li CY, et al. 2017. Autophagy-inducing effect of pterostilbene: A prospective therapeutic/preventive option for skin diseases. J Food Drug Anal 25:125-133.
    Chen ZW, Miu HF, Wang HP, Wu ZN, Wang WJ, Ling YJ, et al. 2018. Pterostilbene protects against uraemia serum-induced endothelial cell damage via activation of keap1/nrf2/ho-1 signaling. International urology and nephrology 50:559-570.
    Chou X, Ding F, Zhang X, Ding X, Gao H, Wu Q. 2019. Sirtuin-1 ameliorates cadmium-induced endoplasmic reticulum stress and pyroptosis through xbp-1s deacetylation in human renal tubular epithelial cells. Archives of toxicology 93:965-986.
    Chowdhury S, Ghosh S, Das AK, Sil PC. 2019. Ferulic acid protects hyperglycemia-induced kidney damage by regulating oxidative insult, inflammation and autophagy. Frontiers in pharmacology 10:27.
    Clemens B, Hayes W, Sundram K, Pressman P. 2017. Palm oil and threats to a critically important food source: The chloropropanols—caution, controversy, and correction. Toxicology Research and Application volume1:1-9.
    Dhuriya YK, Sharma D. 2018. Necroptosis: A regulated inflammatory mode of cell death. Journal of neuroinflammation 15:199.
    EFSA. 2018. Scientific opinion on the risks for human health related to the presence of 3- and 2-monochloropropanediol (mcpd), and their fatty acid esters, and glycidyl fatty acid esters in food. EFSA Journal 14:4426-4559
    Fernie AR, Carrari F, Sweetlove LJ. 2004. Respiratory metabolism: Glycolysis, the tca cycle and mitochondrial electron transport. Curr Opin Plant Biol 7:254-261.
    Fleming A, Noda T, Yoshimori T, Rubinsztein DC. 2011. Chemical modulators of autophagy as biological probes and potential therapeutics. Nat Chem Biol 7:9-17.
    Galluzzi L, Kepp O, Kroemer G. 2016. Mitochondrial regulation of cell death: A phylogenetically conserved control. Microbial cell (Graz, Austria) 3:101-108.
    Gao M, Yi J, Zhu J, Minikes AM, Monian P, Thompson CB, et al. 2019. Role of mitochondria in ferroptosis. Molecular cell 73:354-363.e353.
    Ghavami S, Hashemi M, Ande SR, Yeganeh B, Xiao W, Eshraghi M, et al. 2009. Apoptosis and cancer: Mutations within caspase genes. J Med Genet 46:497-510.
    Goodwin S, McPherson JD, McCombie WR. 2016. Coming of age: Ten years of next-generation sequencing technologies. Nature reviews Genetics 17:333-351.
    Granata S, Masola V, Zoratti E, Scupoli MT, Baruzzi A, Messa M, et al. 2015. Nlrp3 inflammasome activation in dialyzed chronic kidney disease patients. Plos One 10:16.
    Gu TT, Chen TY, Yang YZ, Zhao XJ, Sun Y, Li TS, et al. 2019. Pterostilbene alleviates fructose-induced renal fibrosis by suppressing tgf-beta1/tgf-beta type i receptor/smads signaling in proximal tubular epithelial cells. European journal of pharmacology 842:70-78.
    Gurung P, Lukens JR, Kanneganti TD. 2015. Mitochondria: Diversity in the regulation of the nlrp3 inflammasome. Trends Mol Med 21:193-201.
    Hallan SI, Ritz E, Lydersen S, Romundstad S, Kvenild K, Orth SR. 2009. Combining gfr and albuminuria to classify ckd improves prediction of esrd. Journal of the American Society of Nephrology 20:1069-1077.
    Hosgood HD, 3rd, Berndt SI, Lan Q. 2007. Gst genotypes and lung cancer susceptibility in asian populations with indoor air pollution exposures: A meta-analysis. Mutation research 636:134-143.
    Huang G, Xue J, Sun X, Wang J, Yu LL. 2018. Necroptosis in 3-chloro-1, 2-propanediol (3-mcpd)-dipalmitate-induced acute kidney injury in vivo and its repression by mir-223-3p. Toxicology 406-407:33-43.
    Hussain MA. 2016. Food contamination: Major challenges of the future. Foods (Basel, Switzerland) 5.
    Hutton HL, Ooi JD, Holdsworth SR, Kitching AR. 2016. The nlrp3 inflammasome in kidney disease and autoimmunity. Nephrology (Carlton, Vic) 21:736-744.
    IARC. 2013. Some chemicals present in industrial and consumer products, food and drinking-water. IARC 101:9-549.
    Kaze N, Watanabe Y, Sato H, Murota K, Kotaniguchi M, Yamamoto H, et al. 2016. Estimation of the intestinal absorption and metabolism behaviors of 2-and 3-monochloropropanediol esters. Lipids 51:913-922.
    Keenan RT, Krasnokutsky S, Pillinger MH. 2017. Etiology and pathogenesis of hyperuricemia and gout. In: Kelley and firestein's textbook of rheumatology:Elsevier, 1597-1619. e1596.
    Kim SM, Kim YG, Kim DJ, Park SH, Jeong KH, Lee YH, et al. 2018. Inflammasome-independent role of nlrp3 mediates mitochondrial regulation in renal injury. Frontiers in immunology 9:2563.
    Knief C. 2014. Analysis of plant microbe interactions in the era of next generation sequencing technologies. 5.
    Kátia C, Favareto A. 2017. Experimental exposure to 3-monochloropropane-1,2-diol from the pre-puberty causes damage in sperm production and motility in adulthood. Acta Scientiarum Biological Sciences 39:235-242.
    Kumagai T, Ota T, Tamura Y, Chang WX, Shibata S, Uchida S. 2017. Time to target uric acid to retard ckd progression. Clinical and Experimental Nephrology 21:182-192.
    Kwack SJ, Kim SS, Choi YW, Rhee GS, Da Lee R, Seok JH, et al. 2004. Mechanism of antifertility in male rats treated with 3-monochloro-1,2-propanediol (3-mcpd). Journal of toxicology and environmental health Part A 67:2001-2011.
    Lee BQ, Khor SM. 2015. 3-chloropropane-1,2-diol (3-mcpd) in soy sauce: A review on the formation, reduction, and detection of this potential carcinogen. Comprehensive Reviews in Food Science and Food Safety 14:48-66.
    Lee BS, Park SJ, Kim YB, Han JS, Jeong EJ, Moon KS, et al. 2015. A 28-day oral gavage toxicity study of 3-monochloropropane-1,2-diol (3-mcpd) in cb6f1-non-tg rash2 mice. Food and Chemical Toxicology 86:95-103.
    Lee JW. 2015. Rna sequencing of the nephron transcriptome: A technical note. Kidney Research and Clinical Practice 34:219-227.
    Lei P, Bai T, Sun Y. 2019. Mechanisms of ferroptosis and relations with regulated cell death: A review. Frontiers in physiology 10:139.
    Liang C. 2010. Negative regulation of autophagy. Cell death and differentiation 17:1807-1815.
    Liu M, Huang GR, Wang TTY, Sun XJ, Yu LL. 2016. 3-mcpd 1-palmitate induced tubular cell apoptosis in vivo via jnk/p53 pathways. Toxicological Sciences 151:181-192.
    Liu M, Liu J, Wu Y, Gao B, Wu P, Shi H, et al. 2017. Preparation of five 3-mcpd fatty acid esters, and the effects of their chemical structures on acute oral toxicity in swiss mice. Journal of the science of food and agriculture 97:841-848.
    Liu Q, Zhang D, Hu D, Zhou X, Zhou Y. 2018. The role of mitochondria in nlrp3 inflammasome activation. Molecular immunology 103:115-124.
    Lu B, Chen XB, Ying MD, He QJ, Cao J, Yang B. 2017. The role of ferroptosis in cancer development and treatment response. Frontiers in pharmacology 8:992.
    Malik A, Kanneganti TD. 2017. Inflammasome activation and assembly at a glance. J Cell Sci 130:3955-3963.
    Man SM, Karki R, Kanneganti TD. 2017. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunological reviews 277:61-75.
    Martin-Sanchez D, Poveda J, Fontecha-Barriuso M, Ruiz-Andres O, Sanchez-Nino MD, Ruiz-Ortega M, et al. 2018. Targeting of regulated necrosis in kidney disease. Nefrologia : publicacion oficial de la Sociedad Espanola Nefrologia 38:125-135.
    Mba OI, Dumont MJ, Ngadi M. 2015. Palm oil: Processing, characterization and utilization in the food industry - a review. Food Bioscience 10:26-41.
    Mizushima N, Yoshimori T, Ohsumi Y. 2011. The role of atg proteins in autophagosome formation. In: Annual review of cell and developmental biology, vol 27, Vol. 27, (Schekman R, Goldstein L, Lehmann R, eds). Palo Alto:Annual Reviews, 107-132.
    Onami S, Cho YM, Toyoda T, Mizuta Y, Yoshida M, Nishikawa A, et al. 2014. A 13-week repeated dose study of three 3-monochloropropane-1,2-diol fatty acid esters in f344 rats. Archives of toxicology 88:871-880.
    Onami S, Cho YM, Toyoda T, Akagi J, Fujiwara S, Ochiai R, et al. 2015. Orally administered glycidol and its fatty acid esters as well as 3-mcpd fatty acid esters are metabolized to 3-mcpd in the f344 rat. Regulatory Toxicology and Pharmacology 73:726-731.
    Ozcagli E, Alpertunga B, Fenga C, Berktas M, Tsitsimpikou C, Wilks MF, et al. 2016. Effects of 3-monochloropropane-1,2-diol (3-mcpd) and its metabolites on DNA damage and repair under in vitro conditions. Food and Chemical Toxicology 89:1-7.
    Pan J, Shi M, Li L, Liu J, Guo F, Feng Y, et al. 2019. Pterostilbene, a bioactive component of blueberries, alleviates renal fibrosis in a severe mouse model of hyperuricemic nephropathy. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 109:1802-1808.
    Peng XL, Gan J, Wang Q, Shi ZQ, Xia XD. 2016. 3-monochloro-1,2-propanediol (3-mcpd) induces apoptosis via mitochondrial oxidative phosphorylation system impairment and the caspase cascade pathway. Toxicology 372:1-11.
    Ralston JC, Lyons CL, Kennedy EB, Kirwan AM, Roche HM. 2017. Fatty acids and nlrp3 inflammasome-mediated inflammation in metabolic tissues. In: Annual review of nutrition, vol 37, Vol. 37, (Stover PJ, Balling R, eds). Palo Alto:Annual Reviews, 77-102.
    Rather IA, Koh WY, Paek WK, Lim J. 2017. The sources of chemical contaminants in food and their health implications. Frontiers in pharmacology 8:830.
    Rubinsztein DC, Cuervo AM, Ravikumar B, Sarkar S, Korolchuk V, Kaushik S, et al. 2009. In search of an "autophagomometer". Autophagy 5:585-589.
    Sawada S, Oberemm A, Buhrke T, Meckert C, Rozycki C, Braeuning A, et al. 2015. Proteomic analysis of 3-mcpd and 3-mcpd dipalmitate toxicity in rat testis. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 83:84-92.
    Schultrich K, Frenzel F, Oberemm A, Buhrke T, Braeuning A, Lampen A. 2017. Comparative proteomic analysis of 2-mcpd- and 3-mcpd-induced heart toxicity in the rat. Archives of toxicology 91:3145-3155.
    Senyildiz M, Alpertunga B, Ozden S. 2017. DNA methylation analysis in rat kidney epithelial cells exposed to 3-mcpd and glycidol. Drug and Chemical Toxicology 40:432-439.
    Shao BZ, Xu ZQ, Han BZ, Su DF, Liu C. 2015. Nlrp3 inflammasome and its inhibitors: A review. Frontiers in pharmacology 6:9.
    Sharma N, Singh A, Singh N, Behera D, Sharma S. 2015. Genetic polymorphisms in gstm1, gstt1 and gstp1 genes and risk of lung cancer in a north indian population. Cancer epidemiology 39:947-955.
    Shimada K, Crother TR, Karlin J, Dagvadorj J, Chiba N, Chen S, et al. 2012. Oxidized mitochondrial DNA activates the nlrp3 inflammasome during apoptosis. Immunity 36:401-414.
    So A, Thorens B. 2010. Uric acid transport and disease. The Journal of clinical investigation 120:1791-1799.
    Sun J, Bai S, Bai W, Zou F, Zhang L, Su Z, et al. 2013. Toxic mechanisms of 3-monochloropropane-1,2-diol on progesterone production in r2c rat leydig cells. Journal of agricultural and food chemistry 61:9955-9960.
    Svejkovska B, Dolezal M, Velisek J. 2006. Formation and decomposition of 3-chloropropane-1, 2-diol esters in models simulating processed foods. Czech Journal of Food Sciences 24:172.
    Tan PK, Ostertag TM, Miner JN. 2016. Mechanism of high affinity inhibition of the human urate transporter urat1. Scientific reports 6:34995.
    Tsai HY, Ho CT, Chen YK. 2017. Biological actions and molecular effects of resveratrol, pterostilbene, and 3 '-hydroxypterostilbene. J Food Drug Anal 25:134-147.
    Vadakedath S, Kandi V. 2018. Probable potential role of urate transporter genes in the development of metabolic disorders. Cureus 10:e2382.
    Weisshaar R, Perz R. 2010. Fatty acid esters of glycidol in refined fats and oils. European Journal of Lipid Science and Technology 112:158-165.
    Weller JM, Wu SCH, Ferguson CW, Hawthorne VM. 1985. End-stage renal-disease in michigan - incidence, underlying causes, prevalence, and modalities of treatment. American Journal of Nephrology 5:84-95.
    Wu CW, Lin PJ, Tsai JS, Lin CY, Lin LY. 2019. Arsenite-induced apoptosis can be attenuated via depletion of mtor activity to restore autophagy. Toxicology research 8:101-111.
    Yang JR, Yao FH, Zhang JG, Ji ZY, Li KL, Zhan J, et al. 2014. Ischemia-reperfusion induces renal tubule pyroptosis via the chop-caspase-11 pathway. American journal of physiology Renal physiology 306:F75-84.
    Yin S, Guo X, Li J, Fan L, Hu H. 2016. Fumonisin b1 induces autophagic cell death via activation of ern1-mapk8/9/10 pathway in monkey kidney marc-145 cells. Archives of toxicology 90:985-996.
    Yu JW, Lee MS. 2016. Mitochondria and the nlrp3 inflammasome: Physiological and pathological relevance. Arch Pharm Res 39:1503-1518.
    Zhang Z, Shao X, Jiang N, Mou S, Gu L, Li S, et al. 2018. Caspase-11-mediated tubular epithelial pyroptosis underlies contrast-induced acute kidney injury. Cell death & disease 9:983.

    無法下載圖示 校內:2024-07-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE