| 研究生: |
李昌澤 Li, Chang-Tze |
|---|---|
| 論文名稱: |
無鉛與含鉛銲錫材料變形動力學穩態潛變行為之比較 Comparisons of Steady Creep Behavior of Pb and Lead Free Solders Using the Theory of Deformation Kinetics |
| 指導教授: |
李超飛
Lee, C.F. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 無鉛銲錫 、變形動力學 、穩態潛變 |
| 外文關鍵詞: | the theory of deformation kinetics, lead free solders, steady creep |
| 相關次數: | 點閱:157 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
應用1981年Valanis及Lee所提議之變形動力學理論,對42Sn-58Bi、96.5Sn-3.5Ag、95.5Sn-3.8Ag-0.7Cu及63Sn-37Pb四種銲錫材料,在不同溫度和應力作用下之穩態潛變率數據,決定其變形動力學本構方程式之材料參數。依前述之理論架構本文進行拉或扭應力之穩態潛變率之相互轉換,並探討變形動力學參數與含鉛量介於37%至100%之
Sn/Pb銲錫材料關係。
對銲錫抗潛變能力之評估,本文分別以能柵傾斜率及材料內部位移對homologous溫度(T/Tm)的敏感度進行評估 。在基體(Bulk)型態下,以63Sn-37Pb為基準對前述三種不含鉛之銲錫進行T/Tm 0.5~0.9之間抗潛變能力之比較。42Sn-58Bi在常溫時(T/Tm約在0.5~0.6左右),抗潛變能力與63Sn-37Pb相當,在高溫下(T/Tm約在0.9左右),抗潛變能力比63Sn-37Pb低。95.5Sn-3.8Ag-0.7Cu 及96.5Sn-3.5Ag兩銲材與63Sn-37Pb之抗潛變能力比較則是未定。再以不含鉛95.5Sn-3.8Ag-0.7Cu 及96.5Sn-3.5Ag兩銲材作抗潛變能力比較,則加入0.7Cu之錫銀銲材在T/Tm 0.5~0.9之間均有較好的抗潛變能力。上述評估結果均與觀查此四種銲材微觀組織圖後所做成之結果相符。
Both Valanis and Lee to propose the theory of deformation kinetics in 1981, that decide deformation kinetics constitutive equation of solder materials (42Sn-58Bi, 96.5Sn-3.5Ag, 63Sn-37Pb, 95.5Sn-3.8Ag-0.7Cu) parameter when different temperature and stress affects of steady state creep rate data. In accordance with, this theory carcass proceed pull or twist stress steady state creep rates of mutual transformation, and confer deformation kinetics parameter with lead amount between 37% and 100% Sn/Pb solder of relationship.
Solders are estimated in anticreep ability. This text proceed estimate by both energy barrier gradient and a material internal displacement for homologous temperature (T/Tm) of sensitivity. This 63Sn-37Pb is compared model of this three kinds of lead free solders T/Tm between 0.5 and 0.9 anticreep ability in bulk specimen.While 42Sn-58Bi has similar anticreep ability to 63Sn-37Pb solder at room temperature(T/Tm about 0.5 to 0.6), it becomes lower anticreep ability as high temperature (T/Tm about 0.9). Both 95.5Sn-3.8Ag-0.7Cu and 96.5Sn-3.5Ag solders are uncertain anticreep ability to 63Sn-37Pb solder. Compare anticreep ability of 95.5Sn-3.8Ag-0.7Cu solder and 96.5Sn-3.5Ag solder, where join 0.7%Cu batter anticreep ability at T/Tm range between 0.5 and 0.9 . A result of the above-mentioned estimate tally with microstructuralfour of four kinds solder materials point of view.
[1] Valanis, K. C., and Lee C. F., “Deformation
Kinetics Theory of Steady-State Creep in
Metals,” Int. J. Solid and Structures, Vol.17,
pp.589-604, 1981.
[2] Raeder, C.H., Felton, L.E., Knorr, D.B.,
Schmeelk, G.B., and Lee,D.“ Microstructural
Evolution and Mechanical Properties of Sn-Bi
Based Solders,”IEEE/CHMT International
Electronic Manufacturing Technology Symposium,
Vol.15, No.4-6, pp.119-127, Oct. 1993.
[3] Raeder, C.H., Schmeelk, G. D., Mitlin, D.,
Barbieri, T., Yang, W., “Isothermal Creep of
Eutectic SnBi and SnAg Solder and Solder
Joints,”IEEE/CPMT Int’l Electronics
Manufacturing Technology Symposlum, Vol.1,
No.12-14, pp.1-6, Sept. 1994.
[4] Yang, Hong., Deane, Phillip., Magill Paul.,
Murty Linga. K.,“CreepDeformation of
96.5Sn-3.5Ag Solder Joint In A Flip Chip
Package,” IEEE Electronics Components and
Technology Conference, Vol.46, No.28-31,
pp.1136-1142, May 1996.
[5] Hua, F., Mei, Z. M., and Glazer, J.,“ Eutectic
Sn-Bi as an Alternative to Pb-Free Solders,”
IEEE Electronics Components and Technology
Conference,Vol.48, No.25-28, pp.277-283, May
1998.
[6] Shi, X . Q., Yang, Q. J., Wang, Z. P., Pang,
H. L. J., and Zhou, W., “Reliability
Assessment of PBGA Solder Joints Using the
New Creep Constitutive Relationship and
Modified Energy-Based Life Prediction
Model,”IEEE Electronics Components and
Technology Conference, Vol.3,No.5-7,pp.
398-405, Dec. 2000.
[7] Wiese, S., Schubert, A., Walter, H., Dudek, R.,
Feustel, F., Meusel, E.,and Michel, B.,“
Constitutive Behaviour of Lead-free Solders
vs.Lead-containing Solders-Experiments on Bulk
Specimens and Flip-Chip Joints,”IEEE
Electronics Components and Technology
Conference, Vol.51,No.29,pp.890 -902, May-1
June 2001.
[8] Schubert, A., Walter, H., Dudek, R., Michel,
B., Lefranc, G., Otto, J.,and Mitic, G.,“
Thermo-Mechanical Properties and Creep
Deformation of Lead-Containing and Lead-Free
Solders,” IEEE International Symposium on
Advanced Packaging Materials,No.11-14,pp.129
-134, March 2001.
[9] Valanis, K. C., “Deformation Kinetics in
Three Dimensions,” Int. J.Engng Sci., Vol.
22, No.8-10, pp.979-988, 1984.
[10]張明凱,”變形動力學之銲錫材料的穩態潛變行為,”
成功大學工程科學系碩士畢業論文,2001年
[11]鍾維光,”不同鉛錫比銲材穩態潛變行為之變形動力學
研究,” 成功大學工程科學系碩士畢業論文,2002年