簡易檢索 / 詳目顯示

研究生: 謝宗翰
Hsieh, Tsung-Han
論文名稱: 共享控制應用於人與助行器系統之研究
The Study of Shared Control Applied on a Human-and-Walking-Aid System
指導教授: 田思齊
Tien, Szu-Chi
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 71
中文關鍵詞: 共享控制助行器行走步態模型安全性預測仲裁
外文關鍵詞: shared control, walking-assistant system, gait model, safety prediction, arbitration
相關次數: 點閱:165下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將人機共享控制應用於適合行走不便者使用的智慧型助行器上。經由建立一個使用共享控制的人與助行器系統,並透過模擬的方式驗證共享控制能夠避免使用者疏忽而造成的傷害,且同時也避免過於相信智慧控制器而導致偏離使用者意圖。在人體狀態資訊方面,本研究建立人與助行器系統行走步態模型,再利用此模型與人體參數分析人體作用力情形,獲得人與助行器系統的狀態資訊。在共享控制中的預測方面,本研究以安全性預測為主要考量。由偵測環境中障礙物距離,以及利用零力矩點與建立之人與助行器系統模型,預測人體姿態的穩定性,作為智慧控制器建議命令之依據。在共享控制中的仲裁方面,本研究提出由使用者因實際狀況改變仲裁權重的機制,進而裁決最終的控制命令。模擬結果顯示,人與助行器系統運用本研究所提出之共享控制方法,能在一維與二維環境下確保使用者的安全性。此外,當機器偏離使用者意圖時,使用者能介入並修正。

    This research applies the human-machine-shared control on a smart walking-assistant system for walking-impaired persons. With simulation of this smart walking-assistant system, it is verified that the shared control can not only prevent damage caused by users' negligence but also avoid deviations from users' intention when relying on the smart controller overly. In order to simulate the walking states, a model of walking gate with a smart walking-assistant system is established first and then used to analyze forces exerted on users as well as the corresponding walking states. For prediction, safety is the main concern of this research. Therefore, the recommended command of the smart controller is based on users' stability which is evaluated with distance from obstacles in the environment and the zero moment point of the user and the smart walking-assistant system. As for arbitration, a mechanism for users to change the weighting of arbitration according to the actual situation is proposed to affect the final control commands. The simulation results show that, with the proposed methods, the smart walking-assistant system can ensure users' safety in both one-dimensional and two-dimensional environments. In addition, users can step in the control loop and fix the error when the smart walking-assistant system deviates from their intention.

    圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 符號表. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi 第一章緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 第二章人與助行器系統介紹. . . . . . . . . . . . . . . . . . . . . . . . . . 5 第三章人與助行器系統模型. . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.1 身體參數. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.2 步態與身體姿態運動模型. . . . . . . . . . . . . . . . . . . . . . . 10 3.3 反力與關節施力計算. . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.3.1 身體受到的反作用力計算. . . . . . . . . . . . . . . . . . . 22 3.3.2 關節施力計算. . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.4 助行器模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 第四章控制方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.1 智慧控制器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.2 意圖轉換器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.3 一致性評估器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.4 仲裁. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 第五章模擬與討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.1 虛擬使用者行為模式. . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.2 模擬情境. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.3 模擬結果與討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5.3.1 一維環境. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5.3.2 二維環境. . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 第六章結論與未來展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6.2 未來展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

    [1] R.C. Goertz. Manipulators used for handling radioactive materials. Human
    factors in technology, pages 425-443, 1963.
    [2] H. Kazerooni. Human-robot interaction via the transfer of power and information
    signals. IEEE Transactions on systems, Man, and Cybernetics,
    20(2):450-463, 1990.
    [3] Y. Yamamoto, H. Eda, and X. Yun. Coordinated task execution of a human
    and a mobile manipulator. In Robotics and Automation, 1996. Proceedings.,
    1996 IEEE International Conference on, volume 2, pages 1006-1011. IEEE,
    1996.
    [4] P. Aigner and B. McCarragher. Shared control framework applied to a robotic
    aid for the blind. In Robotics and Automation, 1998. Proceedings. 1998 IEEE
    International Conference on, volume 1, pages 717-722. IEEE, 1998.
    [5] R. Taylor, P. Jensen, L. Whitcomb, A. Barnes, R. Kumar, D. Stoianovici,
    P. Gupta, Z. Wang, E. Dejuan, and L. Kavoussi. A steady-hand robotic
    system for microsurgical augmentation. The International Journal of Robotics
    Research, 18(12):1201-1210, 1999.
    [6] S. Payandeh. Application of shared control strategy in the design of a robotic
    device. In American Control Conference, 2001. Proceedings of the 2001, volume
    6, pages 4532-4536. IEEE, 2001.
    [7] P. Fischer, R. Daniel, and K.V. Siva. Speci cation and design of input devices
    for teleoperation. In Robotics and Automation, 1990. Proceedings., 1990 IEEE
    International Conference on, pages 540-545. IEEE, 1990.
    [8] A.C. Rolfe. A perspective on fusion relevant remote handling techniques.
    Fusion Engineering and Design, 82(15):1917-1923, 2007.
    [9] H. Boessenkool, D. Abbink, C. Heemskerk, and F. van der Helm. Haptic
    shared control improves tele-operated task performance towards performance
    in direct control. In World Haptics Conference (WHC), 2011 IEEE, pages
    433-438. IEEE, 2011.
    [10] Z. Li, F. Sun, H. Liu, Y. Wang, and F. Wu. Shared control for space teleoperation
    using arti cial potential eld. Journal of Tsinghua University (Science
    and Technology), 50:1728-1732, 1737.
    [11] H. Muslim, M. Itoh, and M.P. Pacaux-Lemoine. Driving with shared control:
    How support system performance impacts safety. In Systems, Man, and
    Cybernetics (SMC), 2016 IEEE International Conference on, pages 000582-
    000587. IEEE, 2016.
    [12] M. Burckhardt, F. Brugger, and A. Faulhaber. Anti-lock brake system, August
    29 1989. US Patent 4,861,118.
    [13] D. Katzourakis, M. Alirezaei, J. de Winter, M. Corno, R. Happee, A Gha ari,
    and R Kazemi. Shared control for road departure prevention. In Systems,
    Man, and Cybernetics (SMC), 2011 IEEE International Conference on, pages
    1037-1043. IEEE, 2011.
    [14] T.A. English and M. Kilvington. In vivo records of hip loads using a femoral
    implant with telemetric output (a prelimary report). Journal of biomedical
    engineering, 1(2):111-115, 1979.
    [15] R. Brown, A. Burstein, and V. Frankel. Telemetering in vivo loads from nail
    plate implants. Journal of biomechanics, 15(11):815819-817823, 1982.
    [16] G.M. Kotzar, D.T. Davy, V.M. Goldberg, K.G. Heiple, J. Berilla, R.H. Brown,
    and A.H. Burstein. Telemeterized in vivo hip joint force data: a report on two
    patients after total hip surgery. Journal of Orthopaedic Research, 9(5):621-
    633, 1991.
    [17] S. Tadano, R. Takeda, and H. Miyagawa. Three dimensional gait analysis
    using wearable acceleration and gyro sensors based on quaternion calculations.
    Sensors, 13(7):9321-9343, 2013.
    [18] Z. Zhang. Microsoft kinect sensor and its e ect. IEEE multimedia, 19(2):4-10,
    2012.
    [19] D.L. Paolo. Adjustments to zatsiorsky-seluyanov's segment inertia parameters.
    Journal of biomechanics, 29(9):1223-1230, 1996.
    [20] L. Ren, R. Jones, and D. Howard. Dynamic analysis of load carriage biomechanics
    during level walking. Journal of Biomechanics, 38(4):853-863, 2005.
    [21] C.M.Wu. Design of bipedal gait compensation on slope surfaces using sensory
    data tracking, 2014.
    [22] A. Dragan and S. Srinivasa. A policy-blending formalism for shared control.
    The International Journal of Robotics Research, 32(7):790-805, 2013.
    [23] C. Huang, G. Wasson, M. Alwan, P. Sheth, and A. Ledoux. Shared navigational
    control and user intent detection in an intelligent walker. In AAAI Fall
    2005 Symposium, 2005.
    [24] S. Bi, H. Min, Z. Zhuang, Q. Huang, H. Mo, Y. Zhou, and S. Li. Walking
    control method of humanoid robot based on fsr sensors and inverted pendulum
    model. In Conference Towards Autonomous Robotic Systems, pages 402-413.
    Springer, 2012.
    [25] J. Tang, Q. Zhao, and R. Yang. Stability control for a walking-chair robot
    with human in the loop. International Journal of Advanced Robotic Systems,
    6(1):3, 2009.
    [26] J. Kofman, X. Wu, T. Luu, and S. Verma. Teleoperation of a robot manipulator
    using a vision-based human-robot interface. IEEE transactions on
    industrial electronics, 52(5):1206-1219, 2005.
    [27] A. Nguyen, C. Sentouh, J.C. Popieul, and B. Soualmi. Shared lateral control
    with on-line adaptation of the automation degree for driver steering assist
    system: A weighting design approach. In Decision and Control (CDC), 2015
    IEEE 54th Annual Conference on, pages 857-862. IEEE, 2015.
    [28] R. Hessmer. Kinematics for lynxmotion robot arm. 2009.
    [29] HIWIN MIKROSYSTEM. Ac servo frls series, 2017.
    [30] P. DeVita and T. Hortobagyi. Age causes a redistribution of joint torques
    and powers during gait. Journal of applied physiology, 88(5):1804-1811, 2000.

    下載圖示 校內:2019-08-01公開
    校外:2019-08-01公開
    QR CODE