簡易檢索 / 詳目顯示

研究生: 關永豪
Kuan, Yong-Hao
論文名稱: 重油摻混生活污泥裂解油之加熱特性分析
Heating Characteristics of Sewage Sludge Pyrolysis Oil Mixed with Heavy Fuel Oil
指導教授: 林大惠
Lin, Ta-Hui
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 117
中文關鍵詞: 下水污泥污泥熱解油重油燃燒特性熱重分析單顆懸掛液滴
外文關鍵詞: Sewage Sludge, Sludge Pyrolytic Oil, Heavy Fuel Oil, Combustion Characteristics, Thermogravimetric Analysis, Suspended Droplet
相關次數: 點閱:167下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要探討乾燥下水污泥(DSS)、 污泥熱解油(SPO)、重油(HFO)及SPO/HFO混合燃料的燃燒特性。 首先,分析乾燥下水污泥和污泥熱解油的性質,並與澳洲煤及重油進行比較。再藉由熱重分析(TGA)結果計算不同燃料的燃燒特性參數,包括:點火溫度(Ti),燃盡溫度(Te),可燃性指數(C)以及綜合燃燒特性指數(S)。除此之外,本研究也透過單顆懸掛液滴實驗觀察各燃料之加熱特性,實驗之環境溫度為500°C、550°C及600°C。
    TGA實驗結果顯示DSS、SPO 以及SPO 與HFO 的混合物的燃 燒反應可分為三個階段: 脫水階段,揮發份釋出與燃燒階段,以及重質成份(HWC)燃燒階段。 此外,提高混合燃料中的SPO 比例可提高燃料於揮發份釋出與燃燒階段之C與S值,然而,對於HWC燃燒階段之反應則無明顯不同。單顆懸掛液滴實驗結果顯示混摻越多的SPO到SPO/HFO混合燃料當中可以提升燃料的燃燒速率。整體而言,將SPO加入HFO中有助於提高燃燒特性。

    An investigation was performed into the heating characteristics of dried sewage sludge (DSS), sewage sludge pyrolysis oil (SPO), heavy fuel oil (HFO), and fuel blends consisting of SPO mixed with HFO (SPO/HFO fuel blend). The properties of DSS and SPO were analyzed and compared with those of Australia coal and HFO. The ignition temperature (Ti), burnout temperature (Te), flammability index (C) and combustion characteristics index (S) of the various fuels were evaluated by means of thermogravimetric analysis (TGA). Furthermore, the heating behaviors of the SPO droplet, HFO droplet and SPO/HFO fuel blend droplets were observed at ambient temperatures of 500°C, 550°C and 600°C using a suspended droplet experimental method. The TGA results showed that the combustion process of the DSS, SPO and SPO/HFO fuel blends comprises three main stages, namely dewaterization stage, volatile decomposition and burning stage, and combustion stage. In the decomposition stage, the fuel blends with a higher SPO content exhibited greater C and S values due to the release and oxidation of the lightweight components (LWC). However, their C and S were quite similar for the highweight components (HWC) that burnout in the combustion stage. The suspended droplet experiments showed that the addition of a greater amount of SPO to the SPO/HFO fuel blend was beneficial in improving the combustion rate. In general, adding any quantity of SPO to the SPO/HFO fuel blend enhances the combustion efficiency.

    Contents I List of table IV List of figure V Nomenclature VIII 1. Introduction 1 1.1 Global Energy Problem 1 1.2 Global Sludge Problem 2 1.2.1 Sewage Sludge in Taiwan 3 1.2.2 Composition of the Sewage Sludge 4 1.2.3 Existing Regulations Pertaining to Sewage Sludge 4 1.2.3.1 Agricultural Use 5 1.2.3.2 Incineration 6 1.2.3.3 Landfill 8 1.3 Sewage Sludge Pyrolysis 8 1.4 Droplet Vaporization and Combustion 10 1.4.1 Fuel Droplet with Single Component 11 1.4.2 Fuel Droplet with Multi-components 12 1.5 Motivation and Objectives of the Study 12 2. Experimental Methods and Materials 14 2.1 Fuels 14 2.1.1 Heavy Fuel Oil 14 2.1.2 Sewage Sludge 14 2.1.3 Sludge Pyrolysis Oil 14 2.1.4 Fuel Blends 16 2.2 Elemental Analysis 16 2.3 Thermogravimetric Analysis 17 2.4 Ignition Temperature 18 2.5 Burnout Temperature 19 2.6 Proximate Analysis 20 2.7 Heating Value Analysis 21 2.8 Viscosity Measurement 22 2.9 Combustion Characteristics Parameters 22 2.10 Suspended Droplet Experiments 24 3. Results and Discussion 27 3.1 Fuel Properties 27 3.1.1 Dried Sewage Sludge 27 3.1.2 Heavy Fuel Oil and Sludge Pyrolysis Oil 28 3.2 Thermogravimetric Analysis 30 3.2.1 Dried Sewage Sludge 30 3.2.2 Heavy Fuel Oil 31 3.2.3 Sludge Pyrolysis Oil 33 3.2.4 20% SPO + 80% HFO 35 3.2.5 40% SPO + 60% HFO 37 3.2.6 50% SPO + 50% HFO 39 3.2.7 60% SPO + 40% HFO 42 3.2.8 80% SPO + 20% HFO 44 3.2.9 Comparison of TGA Results 46 3.2.9.1 TG Result 46 3.2.9.2 DTG Result 47 3.2.9.3 DSC Result 48 3.3 Combustion Characteristic Parameters 49 3.3.1 Dried Sewage Sludge 49 3.3.2 Heavy Fuel Oil and Sludge Pyrolysis Oil 50 3.3.3 Fuel Blend with Different SPO/HFO Ratio 51 3.4 Suspended Droplet Experiments 52 3.4.1 Fuel Droplet Heating Behavior 52 3.4.2 500°C Ambient Temperature 54 3.4.3 550°C Ambient Temperature 55 3.4.4 600°C Ambient Temperature 56 3.4.5 Comparison of Suspended Droplet Experiments Results 57 3.4.6 Vaporization Rate and Combustion Rate 58 4. Conclusions 60 4.1 Fuel Properties 60 4.2 Combustion Characteristics Parameters 61 4.3 Suspended Droplet Experiments 61 5. References 63

    1. IPCC, “Special Report on Renewable Energy Sources and Climate Change Mitigation,” Cambridge University Press, New York, 2011.
    2. IEA, “Key World Energy Statistics”, 2016.
    3. Lundin, M., Olofsson, M., Pettersson, G. J., Zetterlund, H., “Environmental and Economic Assessment of Sewage Sludge Handling Options,” Resour. Conserv. Recycl, Vol. 41, pp.255-278, 2004.
    4. Kress, N., Herut, B., Galil, B. S., “Sewage Sludge Impact on Sediment Quality and Benthic Assemblages of the Mediterranean Coast of Israel: A Long-term Study,” Mar. Environ. Res., Vol. 57, pp. 213 - 233, 2004.
    5. Go´mez-Rico, M. F., Font, R., Fullana, A., Martı´n-Gullo´n, I., “Thermogravimetric Study of Different Sewage Sludges and Their Relationship with the Nitrogen Content,” J. Anal. Appl. Pyrolysis, Vol. 74, pp. 421-428, 2005.
    6. Environmental Protection Administration, “污泥處理現況檢討及因應策略,” R.O.C.(Taiwan), 2014
    7. Chu, C. P., “Develop and Application of the Organic Sludge Recycling and Recovery,” Sinotech Engineering Consultants, INC. Environmental Engineering Research Center. (財團法人中興工程顧問環境發展中心,朱敬平,“有機污泥資源化技術發展與應用”)
    8. Shao, J. A., “Pyrolysis Experiment and Model Research of City Sewage Sludge,” Huazhong University of Science and Technology, PhD Thesis, 2008. (邵敬爱, “城市污水污泥热解试验与模型研究”)
    9. “Council Directive 91/271/EEC of 21 May 1991 Concerning Urban Waste Water Treatment”, European Union, 1991.
    10. Eurostat, “Total Sewage Sludge Production from Urban Wastewater” Available from: http://ec.europa.eu/eurostat/tgm/refreshTableAction.do?tab=table&plugin=1&pcode=ten00030&language=en
    11. Laturnus, F., von Arnold, K., Gron, C., “Organic Contaminants from Sewage Sludge Applied to Agricultural Soils: False Alarm Regarding Possible Problems for Food Safety,” Environ. Sci. Pollut. Res. Int., Vol.4, pp. 53 - 60, 2007.
    12. Fytili, D., Zabaniotou, A., “Utilization of Sewage Sludge in EU Application of Old and New Methods: A Review,” Renew. Sust. Energ. Rev., Vol. 12, pp. 116 - 40, 2008.
    13. “Council Directive 86/278/EEC of 12 June 1986 on the Protection of the Environment, and in Particular of the Soil, when Sewage Sludge is Used in Agriculture”, European Union, 1986.
    14. European Commission, “Disposal and Recycling Routes for Sewage Sludge,” Office for Official Publications of the European Communities, European Union, 2002.
    15. Khiari B, Marias F, Zagrouba F, Vaxelaire J., “Analytical Study of the Pyrolysis Process in a Wastewater Treatment Pilot Station,” Desalination, Vol. 167, pp. 39-47, 2004.
    16. “Directive 2000/76/EC of the European Parliament and of the Council of 4 December 2000 on the Incineration of Waste”, European Union, 2000.
    17. “Council Directive 1999/30/EC of 22 April 1999 Relating to Limit Values for Sulphur Dioxide, Nitrogen Dioxide and Oxides of Nitrogen, Particulate Matter and Lead in Ambient Air”, European Union, 1999.
    18. Rui, B., Nuno, L., Dulce, B., Helena, L., Ibrahim, G., Benilde, M., “Co-combustion of Coal and Sewage Sludge: Chemical and Ecotoxicological Properties of Ashes,” J. Hazard. Mater., Vol. 170, pp. 902-909, 2009.
    19. Stasta, B., Boran, J., Bebar, L., Stehlik, P., Oral, J., “Thermal Processing of Sewage Sludge,” Appl. Therm. Eng., Vol. 26, pp. 1420-1426, 2006.
    20. Cenni, R., Janisch, B., Spliethoff, H., Hein, K. R. G., “Legislative and Environmental Issues on the Use of Ash From Coal and Municipal Sewage Sludge Co-firing as Construction Material,” Waste Manage., Vol. 21, pp. 17 - 31, 2001.
    21. “Council Directive 75/442/EEC of 15 July 1975 on Waste Management”, European Union, 1975.
    22. “Council Directive 91/156/EEC of 18 March 1991 Amending Directive 75/442/EEC on Waste Management”, European Union, 1991.
    23. “Problems around Sewage Sludge,” European commission, Official Publication of the European Communities, 1999, European Union.
    24. Werther, J., Ogada, T., “Sewage Sludge Combustion,” Prog. Energy Combust. Sci., Vol. 25, pp.55 - 116, 1999.
    25. Inguanzo, M., Domínguez, A., Menéndez, J, A., Blanco, C, G., Pis, J, J., “On the Pyrolysis of Sewage Sludge: The Influence of Pyrolysis Conditions on Solid, Liquid and Gas Fractions,” J. Anal. Appl. Pyrolysis, Vol. 63, pp. 209 - 22, 2002.
    26. Isabel, F., Gloria, G., Manuel, A., Javier, Á., Jesús, A., “Sewage Sludge Pyrolysis for Liquid Production: A Review,” Renew. Sust. Energ. Rev., Vol. 16, pp. 2781-2805, 2012.
    27. Goyal, H. B., Diptemdu, S., Saxena, R. C., “Bio-Fuel from Thermochemical Conversion of Renewable Resources: A Review,” Renew. Sust. Energ. Rev., Vol. 12 (2), pp. 504-517, 2008.
    28. Klass, D. L., “Biomass for Renewable Energy, Fuels, and Chemicals-Thermal Conversion: Pyrolysis and Liquefaction,” Academic Press, pp. 225-269, 1998.

    29. Koufopanos, C. A., Papayannakos, N., Maschio, G., Lucchesi, A., “Modelling of the Pyrolysis of Biomass Particles. Studies on kinetics, Thermal and Heat Transfer Effects,” Can. J. Chem. Eng., Vol. 69, pp. 907-915, 1991.
    30. Yang, Y. Z., “Thermal Decomposition Process of Waste,” Industrial Pollution Control, pp. 109-135, 1985. (楊義榮, “廢棄物加熱分解處理法”, 工業污染防治, pp. 109-135, 1958.).
    31. Mcneill, I. C., “15-Thermal Degradtion,” Comprehensive Polymer Science and Supplements, Vol. 6, pp. 451-501, 1989.
    32. Li, J. W., “A Study of Thermal Process for Sewage Sludge Pyrolytic Oil and its Combustion Characteristic,” National Cheng Kung University Department of Aeronautics and Astronautics, Master’s Thesis, Jan 2016.
    33. Spalding, D. B., “The Combustion of Liquid Fuels,” Fuel, Vol. 32, pp. 169-185, 1953.
    34. Law, C. K., “Combusting Physics,” Cambridge University Press, New York, 2006.
    35. Ivanov, V. M., Nefedov, P. I., “Experimental Investigation of the Combustion Process of Natural and Emulsified Liquid Fuels,” NASA TT F-258, 1965.
    36. “vario EL III CHNOS Elemental Analyzer Operating Instructions,” Elementar Analysensysteme, 2005.
    37. Ren, X. Y., Meng, J. J., Moore, A. M., Chang, J. M., Gou, J. S., Park, S. Y., “Thermogravimetric Investigation on the Degradation Properties and Combustion Performance of Bio-oil,” Bioresour. Technol., Vol. 152, pp. 267-274, 2014.
    38. Lu, J. J, Chen, W. H., “Investigation on the Ignition and Burnout Temperature of Bamboo and Sugarcane Bagasse by Thermogravimetric Analysis,” Appl. Energ., Vol. 160, pp. 49-57, 2015.
    39. Chen, G. B., Li, Y. H., Lan, C. H., Lin, H. T., Chao, Y. C., “Micro-explosion and Burning Characteristics of A Single Droplet of Pyrolytic Oil from Castor Seeds,” Appl. Therm. Eng., Vol. 114, pp. 1053-103, 2016.
    40. Bruce, C., Kevin, M., “Proximate Analysis of Coal and Coke using the STA 8000 Simultaneous Thermal Analyzer,” PerkinElmer, Inc., Available from: https://www.perkinelmer.com/lab-solutions/resources/docs/APP_Proximate_Analysis_Coal_Coke.pdf
    41. Cheng, J., Sun, X., “Determination of the Devolatilization Index and Combustion Characteristic Index of Pulverized Coal,” Power Engineering, Vol. 7, pp. 13-18, 1987.
    42. Jin, Y., Li, Y., Liu, F., “Combustion Effects and Emission Characteristics of SO2, CO, NOx and Heavy Metals during Co-combustion of Coal and Dewatered Sludge,” Front. Environ. Sci. En., Vol. 10(1), pp. 201 - 210, 2016.
    43. Wang, Y., Chen, G., Li, Y., Yan, B., Pam, D., “Experimental Study of the Bio-oil Production from Sewage Sludge by Supercritical Conversion Process,” Waste Manage., Vol. 33, pp. 2408-2415, 2013.

    下載圖示 校內:2022-08-01公開
    校外:2022-08-01公開
    QR CODE